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The study builds on previous research that decomposes rating category default 

probability term structures from rating category interest rate term structures, and 

proposes a method to decompose rating migration matrices from market data, via 

decomposed default probability term structures. To investigate the power and 

accuracy of the proposed method, it was examined to what extent an existing, known 

rating migration matrix could again be surfaced by the method. Overall, the results 

are more than satisfactory, and the method promises to be accurate. Although not 

considered here, the main objective is the application of the method to market data. 

The outcome should be insightful in itself, and can be used to evaluate historical 

rating migration matrices commonly devised by rating agencies, and to form a better 

understanding of the default probability term structures embedded in market data. 
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1. Introduction 

 
1.1. The Factors Impacting Bond Valuation 

The extent by which credit risk explain bond premiums is a predominant topic in bond valuation 

research. A number of authors conclude that it only accounts for a small fraction of bond premiums (Huang 

and Huang, 2012; Geske and Delianedis, 2001; Elton et al, 2001). 

The predominant factors affecting bond prices are listed as risk free rates, taxes, jumps, liquidity, 
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market risk factors, issue traits, equity volatility, market risk, systematic risk, and macroeconomic risk factors 

(Houweling et al, 2005; Geske and Delianedis, 2001; Elton et al, 2004; Elton et al, 2001; Grandes and Peter, 

2005; Delianedis and Geske, 2003; Campbell and Taksler, 2003; Collin‐Dufresne et al 2001; Athanassakos 

and Carayannopoulos, 2001; Fama and French, 1993; Merton, 1974). 

A number of studies also look at credit rating migration risk, or simply credit migration risk. Das and 

Tufano (1995) state investors are exposed to three risks: interest rate risk, changes in credit risk caused by 

changes in the credit rating of the issuer of the debt, and changes in credit risk caused by changes in spreads 

on the debt, even when ratings have not changed. Altman (1996) examines the expected spread change and 

cost implication due to credit rating migration. In the context of portfolios, Fei et al (2012) note that risk models 

generally predict for each asset in the portfolio, the corresponding probability of default (PD), exposure at 

default (EAD) and loss given default (LGD). Similarly, Kadam and Lenk (2008) note different estimates for 

risk capital, derived from loss distributions, which they quantify as Value-at-Risk (VAR) and Expected Loss 

(EL) for the portfolio at hand. Jarrow et al (1997) models the impact in forward rates – and thus bond value – 

due to credit rating jumps. 

Delianedis and Geske (2003) note that default probabilities and changes in expected default 

frequencies are important to both the structure and pricing of credit derivatives. All corporate issuers have 

some positive probability of default. This default probability should change continuously with changes in the 

firm’s stock price and thus its leverage. The value of most fixed income securities is typically inversely related 

to the probability of default. Investors are concerned about changes in the value of their fixed income securities 

due to changes in the probability of default, even though the actual default seldom occurs. In fact, fixed income 

investors may be more concerned with changes in the perceived credit quality of their bond holdings than with 

actual default. Rating migrations, which offer one reflection of changes in perceived quality of bonds, occur 

much more frequently than defaults. 

Foss (1995) specifically differentiates between credit risk and default risk. He notes that the terms 

default risk and credit risk are often used interchangeably; however, they are not one and the same. Default 

risk is defined as the risk that the issuer of a fixed-income security will be unable to make timely payments of 

interest or principal. This risk, diversified over a portfolio of equally rated securities, leads to an expected 

default loss. Many of the initial studies on risks and returns focus on historical default rates and losses. 

Although these studies provide valuable insight, default rates and default losses, in isolation, are not 

paramount. Credit risk is defined as the risk that the perceived credit quality of an issuer will change, although 

default is not necessarily a certain event. Increased credit risk is reflected in a widening of the yield spread. 

Credit and default risk are correlated because credit deterioration is almost always a precursor to eventual 

default; even in the most drastic cases, however, until default actually occurs, the potential for recovery or 

stabilization cannot be totally discounted. In line with this, Manzoni (2004) makes the point that, while several 

studies model default and bankruptcy events, no empirical work directly models the probability of a bond 

having its rating revised. He points out the traditional default mode of thinking of most financial institutions, 

leading to a consensus view of transitions as non-fundamental economic events. 

 

1.2. Credit Default Swaps and Bond Valuation 

Norden and Weber (2009) argue that CDS should reflect pure issuer default risk, and no facility or 

issue specific risk, making these instruments a potentially ideal benchmark for measuring and pricing credit 

risk. According to Blanco et al (2005), CDSs are an upper bound on the price of credit risk (while credit spreads 

form a lower bound). Benkert (2004) argues that CDS premia represent primarily a price of default risk, and 

are in this respect similar to bond spreads. Consequently, CDS premia and bond spreads should be driven by 

the same factors. A number of studies (Benkert, 2004; Ericsson et al, 2009) indeed consider the same factors 

of bond valuation to explain CDS premiums. Weistroffer et al (2009) mention that rating agencies use 

information derived from CDS prices to calculate market implied ratings. 

 

1.3. Default Probability 

Zhu (2006) states that, in general, measures of credit risk consist of three building blocks: probability 

of default (PD), loss given default (LGD) and correlation between PD and LGD. In order to model default risk, 

Athanassakos and Carayannopoulos (2001), consider three proxy variables: i) credit rating, which captures the 

effect of both the probability of default and the recovery rate; ii) time to maturity; iii) the existence of a sinking 

fund. Both of the latter two proxies should be related to the probability of default. 

Grandes and Peter (2005) note that, when government bonds are not truly risk-free, particularly in an 

emerging market, the corporate yield spread above an equivalent government bond yield does not reflect 

corporate default risk, even after controlling for all other factors. It merely reflects corporate default risk in 
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excess of sovereign default risk. They model corporate default probability as the probability that the firm 

defaults given that the sovereign does not default, plus the probability that the firm defaults given that the 

sovereign has defaulted. 

Campbell and Taksler (2003) note that the literature distinguishes between structural and reduced form 

models. The authors note that “In structural models, a firm is assumed to default when the value of its liabilities 

exceeds the value of its assets, in which case bondholders assume control of the company in exchange for its 

residual value. Reduced form models, by contrast, assume exogenous stochastic processes for the default 

probability and the recovery rate. The added flexibility of the reduced-form approach allows default risk to 

play a somewhat greater role in the pricing of corporate bonds.” 

Merton (1974) shows that for a given maturity, the risk of default varies directly with the variance of 

the returns on the firm value. In this context, the business cycle and economic environment impact both the 

level of the risk free rate and the variance of returns on the firm value. 

Huang and Huang (2012) consider a credit risk model with a counter-cyclical market risk premium to 

capture the effects of business cycles on credit risk premia. Secondly, they introduce an analytically tractable 

jump-diffusion structural credit risk model to capture the effects on credit risk premia of certain future states 

with both high default risks and abnormally high stochastic discount factors. The second mechanism is 

distinctly different from the first mechanism. In the model with jumps in asset values, the jumps are 

unpredictable and there is no time variation in market risk premia. 

In line with reduced form models, Elton et al (2001) develop marginal default probabilities from a 

rating transition matrix employing the assumption that the rating transition process is stationary and 

Markovian. In year one, the marginal probability of default can be determined directly from the transition 

matrix and default vector, and is, for each rating class, the proportion of defaults in year one. To obtain 

subsequent year defaults, they first use the transition matrix to calculate the ratings going into a given year for 

any bond starting with a particular rating in the previous year. The defaults of that year are then the proportion 

in each rating class multiplied by the probability that a bond in that class defaults by year end. They find that 

the marginal probability of default increases for the high-rated debt and decreases for the low-rated debt. This 

occurs because bonds change rating classes over time. 

A number of studies use bond valuation models – both structural and reduced form – to note the extent 

by which market prices can be modelled, and to note the magnitude of default probability as bond valuation 

factor (Eom et al, 2004; Elton et al, 2001; Huang and Huang, 2012; Geske and Delianedis, 2001; Collin‐
Dufresne et al, 2001). 

Fei et al (2012) note a credit rating is a financial indicator of an obligor’s level of creditworthiness. 

Given the relationship between credit ratings and default probability or credit quality, Kumar and Haynes 

(2003) discuss rating methodology and list the key factors considered as: i) business analysis (industry risk; 

market position; operating efficiency; legal position), ii) financial analysis (accounting quality; earnings 

protection; adequacy of cash flows; financial flexibility; interest and tax sensitivity), and iii) management 

evaluation (track record of management; evaluation of capacity to overcome adverse situations; goals, 

philosophy and strategies). They find that financial parameters reflect, to a significant extent, the subjective 

and objective factors used by an expert while rating a debt obligation, with hidden relationships between the 

financial parameters and associated expert rating. 

A number of authors examine the timeliness, accuracy and actual information content of credit rating 

agencies' ratings (Hines et al, 1975; Ederington and Goh, 1998; Amato and Furfine, 2004). Amato and Furfine 

(2004) mention that rating agencies insist that their ratings should be interpreted as ordinal rankings of default 

risk that are valid at all points in time, rather than absolute measures of default probability that are constant 

through time. Delianedis and Geske (2003) note that rating agencies regularly measure the historical default 

frequency of corporate issuers. While these historical default frequencies are interesting, they are not forward-

looking. Option models can provide a forward-looking, risk neutral default probability. Chan and Jegadeesh 

(2004) point to evidence that agency ratings may not be accurate in a timely fashion. 

Studies like Wang (2004) attempt to model default ratings, and studies like Hines et al (1975), Kaplan 

and Urwitz (1979), Belkaoui (1980) and Chan and Jegadeesh (2004) statistically model bond ratings.  This 

may provide alternative default probability estimates, as structural models also do, relative to the credit ratings 

of credit rating agencies, but must still be translated to default probability term structures, in a similar way 

credit agencies' ratings are translated. 

Also, a number of studies quantify credit ratings as proxies of credit quality in terms of spread (Foss, 

1995; Kaplan and Urwitz, 1979; Cantor et al, 1997; Perraudin and Taylor, 2004; Chan and Jegadeesh, 2004). 
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1.4. Default Probability Term Structures 

Altman (1989) notes that analysts have concentrated their efforts on measuring the default rate for 

finite periods of time – for example, one year – and then averaging the annual rates for longer periods. 

Elton (1999) argues that realized returns are a very poor measure of expected returns and that 

information surprises highly influence a number of factors in an asset pricing model. He believes that 

developing better measures of expected return and alternative ways of testing asset pricing theories that do not 

require using realized returns have a much higher payoff than any additional development of statistical tests 

that continue to rely on realized returns as a proxy for expected returns. He argues that either there are 

information surprises that are so large or that a sequence of these surprises is correlated so that the cumulative 

effect is so large that they have a significant permanent effect on the realized mean. Furthermore, these 

surprises can dominate the estimate of mean returns and be sufficiently large that they are still a dominant 

influence as the observation interval increases. Thus, the difference between expected and realized returns is 

viewed as a mixture of two distributions, one with standard properties and the other that more closely resembles 

a jump process. 

Duffie and Singleton (1999) state that, because of the possibility of sudden changes in perceptions of 

credit quality, particularly among low-quality issues such as Brady bonds, one may wish to allow for surprise 

jumps in default probability. 

Nelson and Siegel (1987) state the range of shapes generally associated with interest rate term 

structures: monotonic, humped, and S shaped. Related to this, a number of studies consider the relationship or 

correlation between default probability, interest rates, and the state of the economy (Benkert, 2004; Duffie and 

Singleton, 1999; Das and Tufano, 1995; Huang and Huang, 2012; Athanassakos and Carayannopoulos, 2001; 

Amato and Furfine, 2004; Delianedis and Geske, 2003; Longstaff and Schwartz, 1995; Kim et al 1993; 

Campbell and Taksler, 2003; Lando and Skødeberg, 2002; Hamilton and Cantor, 2004).  

Benkert (2004) argue that corporate defaults occur more often during economic downturns than during 

boom phases, and the occurrence of a recession may cause a decline in credit quality that leads to more defaults 

in the future. According to this line of reasoning, the compensation for default risk would rise. Duffie and 

Singleton (1999) note strong evidence that hazard rates for default of corporate bonds vary with the business 

cycle. Equally, recovery data also exhibit a pronounced cyclical component. Das and Tufano (1995) allowed 

recovery to vary over time so as to induce a non-zero correlation between credit spreads and the riskless term 

structure. However, for computational tractability they maintained the assumption of independence of the 

hazard rate (default rate) and risk-free rate. 

Huang and Huang (2012) argue that a credit risk premium is required by investors because the 

uncertainty of default loss should be systematic – bondholders are more likely to suffer default losses in bad 

states of the economy. Moreover, precisely because of the tendency for default events to cluster in the worst 

states of the economy, the credit risk premium can be potentially very large. Athanassakos and 

Carayannopoulos (2001) note that yield spreads are greater during recessions than during recoveries, and also 

point to the link between the behaviour of yield spreads to the shape of the term structure, as a proxy of the 

business cycle. They confirm the typical direct relationship between default risk and yield spreads, and show 

that the impact of the business cycle (macro-economy) on the yield spread of a corporate bond depends on the 

industry sector to which the issuer of the bond belongs. The inflation rate should be directly related to yield 

spreads, since during inflationary periods investors may require higher risk premia from their investments in 

corporate bonds. 

Athanassakos and Carayannopoulos (2001) use the change in the shape of the term structure of interest 

rates – represented by the quarterly change in the difference between the 20-year treasury rates and the three 

month t-bill rates – as a proxy for the business cycle, since much research in the past has linked the shape of 

the treasury term structure to future variations in the business cycle. A steepening term structure is a typical 

result of robust economic growth and lower short term interest rates and reflects a general belief in a more 

robust economic future. The opposite is true when the term structure is flattening or turns negatively sloped. 

Therefore, the particular proxy should be negatively related to yield spreads. Finally, the annual rate of change 

in the industrial production index should be negatively related to yield spreads since increased economic 

activity will bolster investors’ confidence in the corporate sector, and lead to a reduction in the risk premia 

demanded for investment in corporate bonds. 

Amato and Furfine (2004) argue that financial market participants behave as if risk is countercyclical, 

e.g. at its highest during economic downturns. Empirical models, too, tend to indicate a rise in risk during 

recessions. There is a relationship between the correlation of default rates and loss in the event of default and 

the business cycle. Models that assume independence of default probabilities and loss given default will tend 

to underestimate the probability of severe losses during economic downturns. They delineate the empirical 
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significance of the pro-cyclicality of credit quality changes by showing that estimated credit losses are much 

higher in a contraction relative to an expansion. 

Longstaff and Schwartz (1995) argue that the corporate yield spread should vary inversely with the 

benchmark treasury yield, and find evidence to support this. Kim et al (1993) show that default risk is not 

particularly sensitive to the volatility of interest rates but is sensitive to interest rate expectations. Campbell 

and Taksler (2003) note idiosyncratic volatility can move very differently from market-wide volatility. 

Movements in idiosyncratic risk are more persistent than movements in market risk. Lando and Skødeberg 

(2002) note that it is likely that macroeconomic variables or other indicators of the business cycle influence 

rating intensities. 

A number of studies model default probability term structures as instantaneous stochastic processes 

(Das and Tufano, 1995; Duffee, 1999; Jarrow et al, 2002) . For example, Duffee (1999) uses the extended 

Kalman filter to fit yields on bonds issued by individual investment-grade firms to a model of instantaneous 

default risk. Das and Tufano (1995) and Jarrow et al (1997) model default risk as Markov chains or trees. 

Jarrow and Turnbull (1995) exogenously specify a stochastic process for the evolution of the default-free term 

structure and the term structure for risky debt. 

Duffee (1999) argues that at each instant there is some probability that a firm defaults on its 

obligations. Both this probability and the recovery rate in the event of default may vary stochastically through 

time. The stochastic processes determine the price of the credit risk. Although these processes are not formally 

linked to an organization’s asset value, it can be assumed there is some underlying relation. The instantaneous 

probability that a given firm defaults on its obligated bond payments follow a translated single-factor square-

root diffusion process, with a modification that allows the default process to be correlated with the factors 

driving the default-free term structure. There are a number of factors other than default risk that drive a 

discrepancy between corporate and Treasury bond prices, such as liquidity differences, state taxes, and special 

repo rates. Here, all of these factors are substituted into a stochastic process called a default risk process. 

Default risk is negatively correlated with the default-free interest rates. For a typical firm, the instantaneous 

risk of default has a lower bound that exceeds zero. In other words, even if an organization’s financial health 

dramatically improves, the model implies that yield spreads on the organization’s bonds remain positive. 

Duffee (1999) first models the price of a risk-free bond as given by the expectation, under the 

equivalent martingale measure, of the cumulative discount rate between t and T. The discount rate follows a 

stochastic process – the sum of a constant, and two factors that follow independent square-root stochastic 

processes. He then models the adjusted discount rate for bond issues that can default, relative to risk-free 

bonds. This setup is designed to capture three important empirical features of corporate bond yield spreads. 

The most obvious is that the spreads are stochastic, fluctuating with the financial health of the firm. The second 

feature is that yield spreads for very high-quality firms are positive, even at the short end of the yield curve. 

This fact suggests that regardless of how healthy a firm may seem, there is some level below which yield 

spreads cannot fall. The third feature is that yield spreads, especially spreads for lower quality bonds, appear 

to be systematically related to variations in the default-free term structure. 

Houweling and Vorst (2005) note reduced form models that use time series estimation to model the 

hazard rate stochastically, typically as a Vasicek or CIR process. Also, other reduced form models use cross-

sectional estimation and consider either constant or stochastic hazard rates, where the stochastic process is 

chosen in such a way that the survival probability curve is known analytically. Houweling and Vorst (2005) 

follow an intermediate approach by using a deterministic function of time to maturity. This specification 

facilitates parameter estimation, while still allowing for time-dependency. They model the integrated hazard 

function as a polynomial function of time to maturity, with three degrees – linear, quadratic and cubic. 

Das and Tufano (1995) choose to make recovery rates correlated with the term structure of interest 

rates. This results in a model wherein credit spreads are correlated with interest rates, as is evidenced in 

practice. In the Jarrow-Lando-Turnbull model credit spreads change only when credit ratings change, whereas 

in the debt markets it is found that credit spreads change even when ratings have not changed. Injecting 

stochastic recovery rates into the model provides this extra feature. 

In the context of default probability term structures, credit migration and credit migration matrices 

should also be mentioned.  

A number of studies examine the stochastic processes associated with rating transitions (Frydman and 

Schuermann, 2008; Lando and Skødeberg, 2002; Hamilton and Cantor, 2004; Altman, 1996). Altman and 

Rijken (2004) investigate the through-the-cycle methodology that agencies use, in the context of bond 

valuation, and rating timeliness and rating stability.  

Nickell et al (2000) use Moody’s data from 1970 to 1997 to examine the dependence of ratings 

transition probabilities on industry, country and stage of the business cycle using an ordered probit approach, 



Barnard, B., 2017. Rating Migration and Bond Valuation: Decomposing Rating Migration Matrices from Market Data via Default Probability Term 

Structures. Expert Journal of Finance, 5, pp. 49-72. 

54 

and they find that the “business cycle dimension is the most important in explaining variation of these transition 

probabilities”. They point out that rating transition matrices vary according to the stage of the business cycle, 

the industry of the obligor and the length of time that has elapsed since the issuance of the bond. Kadam and 

Lenk (2008) identified strong differences in rating migration behaviour between issuers of different industry 

sectors and countries. 

Bangia et al (2002) argue that “credit migration matrices provide specific linkage between underlying 

macroeconomic conditions and asset quality”. Credit migration matrices characterize the expected changes in 

credit quality of obligors. Total volatility (risk) is composed of a systematic and an idiosyncratic component. 

Because ratings are a reflection of a firm’s asset quality and distance to default, a reasonable definition of 

“systematic” is the state of the economy. They find distinct differences between the U.S. expansion and 

contraction transition matrices. The most striking difference between expansion and contraction matrices are 

the downgrading and especially the default probabilities that increase significantly in contractions. Overall, 

these results reveal that migration probabilities are more stable in contractions than they are on average, 

supporting the existence of two distinct economic regimes. The rating universe should develop differently in 

contraction periods compared to expansion times. 

The straightforward application of these matrices however would normally be restricted to situations 

where the future state of the economy over the transition horizon under consideration is assumed to be known. 

The condition of the economy unmistakably is one of the real drivers of systematic credit risk, especially as 

lower credit classes are substantially more delicate to macro-economic factors. Consequently it ought to be 

integrated into credit risk modelling whenever possible, otherwise the downward potential of high-yield 

portfolios in contractions might be underestimated. Modern credit risk models represent different industries 

only through different term structures, yet not through industry dependent transition matrices. 

Fei et al (2012) proposes an approach to estimate credit rating migration risk that controls for the 

business-cycle evolution during the relevant time horizon in order to ensure adequate capital buffers both in 

good and bad times. The approach allows the default risk associated with a given credit rating to change as the 

economy moves through different points in the business cycle. They mention a body of research linking 

portfolio credit risk with macroeconomic factors showing, for instance, that default risk tends to increase 

during economic downturns. Their premise is that point-in-time methodologies that account for business cycles 

should provide more realistic credit risk measures than through-the-cycle models that smooth out transitory 

fluctuations (perceived as random noise) in economic fundamentals. 

 

1.5. Decomposing Default Probabilities from Market Data 

1.5.1. Decomposing Rating Migration Matrices from Market Data 

Taken from Barnard (2017a), equation 1 states the reduced form model of Duffie and Singleton (1999), 

adapted for coupon paying bonds. Equation 1 has two components, a coupon paying component associated 

with non-default outcomes, and a recovery component associated with default outcomes. 

In the equation, 𝑉 is the price or value of the risk-bearing bond; 𝑀is the number of coupons of the 

bond, including par; 𝐶𝑚is the coupon of the bond on coupon date 𝑚; 𝑅is the recovery of par value; 𝑟𝑡𝑚

𝑟𝑓
 and 

𝑡𝑚 are the risk-free spot rate and time value, respectively, associated with coupon date 𝑚; ℎ𝑛is the default 

probability of interval 𝑛, conditional on no default prior to interval 𝑛; 𝑃𝑚is the cumulative non-default 

probability of interval 𝑚; 𝐽𝑚 is the number of probability intervals for which the possibility of default is 

considered up to coupon date 𝑚; 𝐽𝑀 is the number of probability intervals considered up to maturity. 

For coupon paying bonds, it is convenient to consider 𝐽𝑚 and 𝐽𝑀 to be equal to 𝑚 and 𝑀. For example, 

the third coupon may have three probability intervals leading up to it. For zero-coupon bonds, 𝑀 is equal to 1, 

and 𝐽𝑀 may be greater than 𝑀, with 𝐽𝑚 not necessarily corresponding with 𝑚; a regular coupon interval may 

still be considered though to ensure a timely and consistent consideration of default. A five-year zero coupon 

bond will have only one coupon, but can have up to ten probability intervals leading up to it, if semi-annual 

probability intervals are used. 
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 𝑅 

[1.4] 

 

Although not explicitly stated by them, equation 2 delineates the default probability term structure 

implemented by Elton et al (2001). They subsequently substitute this into a reduced form model similar to 

equation 1. 

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡are all non-default rating categories; 𝐼𝑃𝑎𝑡ℎ𝑚
 is the intensity or propensity of path or 

tree 𝑃𝑎𝑡ℎ𝑚 that leads up to interval 𝑚; similarly, 𝐼𝑗
𝑃𝑎𝑡ℎ is the path intensity or propensity of path 𝑗; 𝐼𝑚

𝑐𝑎𝑡𝑛is the 

intensity or propensity of rating category 𝑛 in interval 𝑚; 𝑃𝑎𝑡ℎ𝑚
𝑑𝑒𝑓𝑎𝑢𝑙𝑡

 is the number of default paths of (up 

to) interval 𝑚; 𝑃𝑎𝑡ℎ𝑚
𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

 is the number of non-default paths of interval 𝑚; contrary to a default path, a 

non-default path can not and does not end up in default over its length or run; 𝑃𝑎𝑡ℎ𝑚 | → 𝑘
𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

 is the number 

of non-default paths that migrate to – end with – category 𝑘in interval 𝑚; 𝑃𝑏(𝑛−1) → 𝑏𝑛

𝑚𝑖𝑔 | 𝑛
is the probability of 

migration from rating 𝑏𝑛−1in interval 𝑛 − 1 to rating 𝑏𝑛 in interval 𝑛; 𝑃𝑘 → 𝑛
𝑚𝑖𝑔 | 𝑚

 is the probability of migration 

from category 𝑘 to category 𝑛 in interval 𝑚; 𝑃𝑘 → 𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔 | 𝑚

 is the probability of category 𝑘 migrating to default 

status in interval 𝑚; ℎ𝑛is again the default probability of interval 𝑛, conditional on no default prior to interval 

𝑛. 

𝐼𝑃𝑎𝑡ℎ𝑚
 =  ∏ 𝑃𝑏(𝑛−1) → 𝑏𝑛

𝑚𝑖𝑔 | 𝑛

𝐽𝑚

𝑛=1

 

[2.1] 

𝐼𝑚
𝑐𝑎𝑡𝑛  =  ∑ ∑ 𝐼𝑗

𝑃𝑎𝑡ℎ

𝑃𝑎𝑡ℎ𝑚−1 | → 𝑘
𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑗=1

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑘=1

 𝑃𝑘 → 𝑛
𝑚𝑖𝑔 | 𝑚

 =  ∑ 𝐼𝑚−1
𝑐𝑎𝑡𝑘

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑘=1

 𝑃𝑘 → 𝑛
𝑚𝑖𝑔 | 𝑚

 

[2.2] 

∏(1 −  ℎ𝑛)

𝑚

𝑛=1

 =  ∑ 𝐼𝑛
𝑃𝑎𝑡ℎ

𝑃𝑎𝑡ℎ𝑚
𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑛=1

 =  ∑ 𝐼𝑚
𝑐𝑎𝑡𝑛

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑛=1

 

[2.3] 

∏(1 −  ℎ𝑛)

𝑚−1

𝑛=1

 ℎ𝑚  =  ∑ ∑ 𝐼𝑗
𝑃𝑎𝑡ℎ

𝑃𝑎𝑡ℎ𝑚−1 | →𝑘
𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑗=1

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑘=1

 𝑃𝑘→𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔 | 𝑚

 

=  ∑ 𝐼𝑚−1
𝑐𝑎𝑡𝑘

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑘=1

 𝑃𝑘 → 𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔 | 𝑚

 

[2.4] 
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ℎ𝑛  =  1 − (∏(1 −  ℎ𝑚)

𝑛

𝑚=1

  ⁄ ∏(1 −  ℎ𝑚)

𝑛−1

𝑚=1

)  

=  ( ∑  

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑘=1

𝐼𝑛−1
𝑐𝑎𝑡𝑘  𝑃𝑘 → 𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑚𝑖𝑔 | 𝑛
)   ⁄ (∏(1 −  ℎ𝑚)

𝑛−1

𝑚=1

) 

[2.5] 

 

Equation 3 allows the recovery rate to depend on the rating category the bond is in when it defaults. 

Moving from equation 1.4 to equation 3.1 is further explained by equation set 2. 𝑅𝑚
𝑛 is the recovery of par value 

of rating category 𝑛 in interval 𝑚. 

 

𝑉 =  ∑ 𝑃𝑚

𝑀

𝑚=1

 𝑒−𝑟𝑡𝑚

𝑟𝑓
 𝑡𝑚  𝐶𝑚  +  ∑  

𝐽𝑀

𝑗=1

∑  

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑛=1

𝐼𝑗−1
𝑐𝑎𝑡𝑛  𝑃𝑛 → 𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑚𝑖𝑔 | 𝑗
 𝑒

−𝑟𝑡𝑗

𝑟𝑓
 𝑡𝑗

 𝑅𝑗
𝑛 

[3.1] 

 

Equation set 4 contains the optimization problem to extract the market rating migration matrix from 

market prices. Any proper rating migration matrix that satisfy the constraints could serve as initial solution. 

The migration probabilities of the rating migration matrix form the coefficients of the optimization problem 

and are adjusted and selected as part of the optimization. A number of constraints can be stipulated, varying in 

principality or importance: For each rating category, the sum of the probabilities of migrating from the 

particular category to any other non-default category, plus the probability of default of the category should 

equal 1 (equation 4.b). For each rating category, any probability of migrating to any other non-default category, 

as well as the probability of default of that particular category should be greater than or equal to zero (equation 

4.c). For each rating category with a rating category preceding it, the particular category's probability of default 

should be equal to or higher than that of the category preceding it (equation 4.d). For each rating category, the 

probability of migrating to rating category 𝑛 should be equal to or greater than the probability of migrating to 

rating category 𝑛 + 1, if rating category 𝑛 succeeds the rating category; and for each rating category, the 

probability of migrating to rating category 𝑛 should be equal to or greater than the probability of migrating to 

rating category 𝑛 − 1, if rating category 𝑛 preceeds the rating category (equation 4.e).  

𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡 and 𝑉𝑛

𝑚𝑜𝑑𝑒𝑙 are the market and modelled bond value of bond 𝑛; 𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡 | 𝑘

 and 𝑉𝑛
𝑚𝑜𝑑𝑒𝑙 | 𝑘

 

are the market and modelled bond value of bond 𝑛 with rating category 𝑘; 𝑁 is the total number of bonds 

included in the sample; 𝑁𝑘 is the total number of sample bonds of rating category 𝑘; 𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡 refers to 

all the non-default rating categories; 𝑃𝑚 → 𝑛
𝑚𝑖𝑔

 is the probability of migrating from category 𝑚 to 𝑛; 𝑃𝑐𝑎𝑡𝑚

𝑑𝑒𝑓𝑎𝑢𝑙𝑡
 is 

the probability of default for category 𝑚. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑(𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡  −  𝑉𝑛

𝑚𝑜𝑑𝑒𝑙)

𝑁

𝑛=1

 2 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ (𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡 | 𝑘

 −  𝑉𝑛
𝑚𝑜𝑑𝑒𝑙 | 𝑘

)

𝑁𝑘

𝑛=1

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑘=1

 2 

[4.a] 

Subject to:  

∑ 𝑃𝑚 → 𝑛
𝑚𝑖𝑔𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑛=1  + 𝑃𝑐𝑎𝑡𝑚

𝑑𝑒𝑓𝑎𝑢𝑙𝑡
 =  1; 𝑚 ∈  { 1, . . , 𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡 } [4.b] 

∑ 𝑃𝑚 → 𝑛
𝑚𝑖𝑔𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑛=1  ≥  0; 𝑃𝑐𝑎𝑡𝑚

𝑑𝑒𝑓𝑎𝑢𝑙𝑡
 ≥  0; 𝑚 ∈  { 1, . . , 𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡 } [4.c] 

𝑃𝑐𝑎𝑡𝑚

𝑑𝑒𝑓𝑎𝑢𝑙𝑡
≥ 𝑃𝑐𝑎𝑡𝑚−1

𝑑𝑒𝑓𝑎𝑢𝑙𝑡
; 𝑚 ∈  { 2, . . , 𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡 } [4.d] 

𝑃𝑛 → 𝑛−𝑥
𝑚𝑖𝑔

 ≥  𝑃𝑛 → 𝑛−𝑥−1
𝑚𝑖𝑔

 

𝑃𝑛 → 𝑛+𝑥
𝑚𝑖𝑔

 ≥  𝑃𝑛 → 𝑛+𝑥+1
𝑚𝑖𝑔

 

𝑛 ∈  (1, . . . 𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡) 

𝑛 −  𝑥 ≤  𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡; 𝑛 −  𝑥 −  1 ≥  1 

𝑛 +  𝑥 +  1 ≤  𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡; 𝑛 +  𝑥 ≥  1 

[4.e] 
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1.5.2. Delta-Coefficients, Partial Derivatives Measurement, and the Optimization Problem 

Solution 

Equation 4.b forms an equality constraint – for any rating category, the sum of the probabilities of 

migrating from the particular category to any other non-default category, plus the probability of default of the 

category should at all times equal 1. A principal concern is the integrity of partial derivatives measured during 

optimization, in the wake of this equality constraint. Given that partial derivatives are measured by small 

coefficient steps during optimization, it may essentially imply non-conformance to or a relaxation or violation 

of the equality constraint, and it may in turn imply the partial derivatives measured are distorted, particularly 

given the sensitivity of their measurement. If the equality constraint must be met not to distort the measurement 

of partial derivatives of the migration probability coefficients, it implies the basic assumption of coefficient 

independence does not hold. Thus, it becomes a question of whether it is permissible to assume coefficient 

independence during measurement of partial derivatives as part of optimization. 

In light of this, it is suggested that, instead of modelling and optimizing migration probability 

coefficients directly, delta coefficients are rather used to model and optimize rating category migration 

probabilities. For this purpose, all rating migrations are sub-classified as primary or x-to-x migration, or 

secondary or x-to-y migration. Primary or x-to-x migration involves the particular rating category maintaining 

its rating; secondary or x-to-y migration involves the rating category migrating to a different rating category, 

including default. A particular delta coefficient then depicts the net movement or change between the primary 

or x-to-x migration and the corresponding secondary or x-to-y migration of the associated rating category. 

Therefore, only x-to-y migration probabilities are assigned delta coefficients. The intermediate or end 

probability of any x-to-y migration equals its initial probability – taken from the initial solution – plus its delta 

coefficient (equation 5.a). x-to-x migration probabilities are not assigned delta coefficients directly, but obtain 

their intermediate and end probabilities from the sum of the x-to-y migration delta coefficients (equation 5.b), 

that can also be seen as depicting net movement out of the primary migration probability coefficient. In other 

words, according to equation 5, a positive (negative) delta coefficient implies x-to-x migration increases 

(decreases), and the corresponding x-to-y migration decreases (increases) by the same quantity. This way, the 

mentioned equality constraint of equation 4.b is met at all times, also when measuring partial derivatives. 

In equation set 5, 𝑃𝑚 → 𝑛
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 is the initial rating migration probability; 𝑃𝑚 → 𝑛
𝑚𝑖𝑔 | 𝑒𝑛𝑑

 is the end rating 

migration probability; 𝛥𝑃𝑚 → 𝑛
𝑚𝑖𝑔

 is the rating migration delta between primary rating category 𝑚 and secondary 

rating category 𝑛; 𝑃𝑚 → 𝑛
𝑚𝑖𝑔

 and 𝑃𝑚 → 𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔

 depict x-to-y migration of rating category 𝑚; 𝑃𝑚 → 𝑚
𝑚𝑖𝑔

 depict x-to-x 

migration of rating category m. 

𝑃𝑚 → 𝑛
𝑚𝑖𝑔 | 𝑒𝑛𝑑

 =  𝑃𝑚 → 𝑛
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 − 𝛥𝑃𝑚 → 𝑛
𝑚𝑖𝑔

; 𝑛 ≠  𝑚; 𝑛 ≠  𝑑𝑒𝑓𝑎𝑢𝑙𝑡; 𝑛 ∈  [𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠] 

𝑃𝑚 → 𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔 | 𝑒𝑛𝑑

 =  𝑃𝑚 → 𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 −  𝛥𝑃𝑚 → 𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔

 

𝑃𝑚 → 𝑛
𝑚𝑖𝑔 | 𝑒𝑛𝑑

 =  𝑃𝑚 → 𝑛
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 − 𝛥𝑃𝑚 → 𝑛
𝑚𝑖𝑔

; 𝑛 ≠  𝑚; 𝑛 ∈  [𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠; 𝑑𝑒𝑓𝑎𝑢𝑙𝑡] 

[5.a] 

𝑃𝑚 → 𝑚
𝑚𝑖𝑔 | 𝑒𝑛𝑑

 =  𝑃𝑚 → 𝑚
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 + ∑ 𝛥𝑃𝑚 → 𝑛
𝑚𝑖𝑔𝑁

𝑛 ; 𝑛 ≠  𝑚; 𝑛 ∈  [𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠; 𝑑𝑒𝑓𝑎𝑢𝑙𝑡] [5.b] 

Equation 6 rewrites the original optimization problem in terms of delta coefficients. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑(𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡  −  𝑉𝑛

𝑚𝑜𝑑𝑒𝑙)

𝑁

𝑛=1

 2 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ (𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡 | 𝑘

 −  𝑉𝑛
𝑚𝑜𝑑𝑒𝑙 | 𝑘

)

𝑁𝑘

𝑛=1

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑘=1

 2 

[6.a] 

Subject to:  

𝑃𝑚 → 𝑚
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 +  ∑ 𝑃𝑚 → 𝑛
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

𝑁

𝑛

 =  1 

𝑛 ≠  𝑚; 𝑛 ∈  [𝑟𝑎𝑡𝑖𝑛𝑔𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠; 𝑑𝑒𝑓𝑎𝑢𝑙𝑡] [6.b] 

𝑃𝑚 → 𝑛
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 −  𝛥𝑃𝑚 → 𝑛
𝑚𝑖𝑔

 ≥  0;  𝑃𝑚 → 𝑛
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 − 𝛥𝑃𝑚 → 𝑛
𝑚𝑖𝑔

 ≤  1 [6.c] 

𝑃𝑚 → 𝑚
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 +  ∑ 𝛥𝑃𝑚 → 𝑛
𝑚𝑖𝑔𝑁

𝑛  ≥  0;  
𝑃𝑚 → 𝑚

𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡
 +  ∑ 𝛥𝑃𝑚 → 𝑛

𝑚𝑖𝑔

𝑁

𝑛

 ≤  1 

[6.d] 

𝑃𝑚 → 𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 −  𝛥𝑃𝑚 → 𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔

 ≥  𝑃(𝑚−1) → 𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 −  𝛥𝑃(𝑚−1) → 𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔

 [6.e] 
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𝑃𝑚 → 𝑛
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 −  𝛥𝑃𝑚 → 𝑛
𝑚𝑖𝑔

 ≥  𝑃𝑚 → 𝑛+1
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 − 𝛥𝑃𝑚 → 𝑛+1
𝑚𝑖𝑔

 [6.f] 

𝑃𝑚 → 𝑛
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 −  𝛥𝑃𝑚 → 𝑛
𝑚𝑖𝑔

 ≥  𝑃𝑚 → 𝑛−1
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 − 𝛥𝑃𝑚 → 𝑛−1
𝑚𝑖𝑔

 [6.g] 

𝑃𝑚 → 𝑚
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 +  ∑ 𝛥𝑃𝑚 → 𝑛
𝑚𝑖𝑔

𝑁

𝑛

 ≥  𝑃𝑚 → 𝑚+1
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 −  𝛥𝑃𝑚 → 𝑚+1
𝑚𝑖𝑔

 

[6.h] 

𝑃𝑚 → 𝑚
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 +  ∑ 𝛥𝑃𝑚 → 𝑛
𝑚𝑖𝑔

𝑁

𝑛

 ≥  𝑃𝑚 → 𝑚−1
𝑚𝑖𝑔 | 𝑠𝑡𝑎𝑟𝑡

 −  𝛥𝑃𝑚 → 𝑚−1
𝑚𝑖𝑔

 

[6.i] 

Equation 6 uses delta coefficients to solve the impact of the rating migration probability sum equality 

constraint of equation 4.b on the measurement of partial derivatives during optimization. However, there is 

one drawback. For any net transfer of migration probability between secondary rating categories to take place, 

it must pass through the primary rating category. At the same time, all partial derivatives would always be 

measured via or against primary rating migration, given that all delta coefficients are stipulated in terms of net 

flow of migration probability between the secondary rating categories and the primary rating category. As an 

example, given the rating migration matrix entry of rating category BBB, and assuming that a shift between 

the probability of migration from rating category BBB to rating category BB, and the probability of migration 

from rating category BBB to rating category A would improve the solution, the shift can generally only occur 

by two sub-shifts – a shift between the probability of migration from rating category BBB to rating category 

BB, and  the probability of migration from rating category BBB to rating category BBB, and a shift between 

the probability of migration from rating category BBB to rating category A, and  the probability of migration 

from rating category BBB to rating category BBB. At present, the partial derivatives of this type of flow cannot 

and are not measured directly, and are only indirectly represented by the partial derivatives of the existing 

coefficients. 

It is possible to also include delta coefficients between secondary rating categories to permit direct 

migration probability flows between secondary rating categories, and to change the way the partial derivatives 

corresponding to these flows or changes are measured. The drawback of this is that it tends to over-correct the 

problem. A number of additional coefficients are introduced, and the change in the measurement of partial 

derivatives allows redundant flows between rating category migration probabilities. Shifting migration 

probability between rating categories – between the primary rating category and secondary rating categories 

for instance – can now follow a number of paths, and are not limited to one path anymore, and measured partial 

derivatives may easily encourage redundant flows. Redundant flows refers to exchange, change or flow of 

migration probability, more than what is necessary to reach a certain desired distribution or spread of migration 

probability. The problem is not in the end distribution of migration probability across the primary and 

secondary rating categories, but in the way it is reached. Redundant flows equally implies a distortion of the 

measurement of partial derivatives, and also impacts the optimization solution. 

Figure 1 demonstrates the issue of redundant flows. Assume 4 rating categories, and that figure 1 

depicts a rating category entry in a rating migration matrix. Further assume that, for simplicity, a migration 

probability transfer of 0.1 between the primary rating category and each secondary rating category optimizes 

the solution. The second part of figure 1 reaches the same result, albeit with a redundant flow between 

secondary rating category 1 and 2. It illustrates that additional delta coefficients between secondary rating 

categories does not necessarily solve the underlying issue of the impact of coefficients on partial derivatives 

measurement and in turn the solution. 

One method to overcome redundant flows is to stipulate all possible, non-redundant flows, and to then 

utilize a corresponding number of sub-optimization problems, with each sub-optimization problem only 

including the delta coefficients that matches the possible, non-redundant flow it represents. The sub-

optimization problems are solved sequentially, and the best result is taken for the next iteration. The process 

is terminated the moment a better solution can no longer be found. Figure 2 shows the number of sub-

optimization problems together with their delta coefficient specification for a 3 rating category problem, that 

would cover all possible rating migration probability transfers, and simultaneously exclude the possibility of 

redundant flows. 
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Figure 1. Redundant flows between the migration probabilities of a rating category rating migration matrix entry 

 

 
Figure 2. Sub-optimization problem count and delta coefficient specification for a 3 rating category problem 

 

1.5.3. Decomposing Default Probability Term Structures from Market Data 

Equation 4 and 6 may still be complex, computationally expensive, and may still be improved upon, 

in particular by sourcing better initial solutions. As illustrated by Barnard (2017b), one option may be to first 

decompose default probability term structures per rating category. This can then be used to decompose or work 

towards a rating migration matrix. Equation 7 stipulates the optimization problem to decompose rating 

category default probability term structures from market data. The constraints are that each of the interval 

default probabilities must be greater than or equal to 0, and less than or equal to 1 (equation 7.b). Also, a 

constraint is added to limit the resulting structure variance below a stipulated ceiling (equation 7.c). This 

method of decomposition is outlined by Barnard (2016a) and Barnard (2016b). Structure variance is measured 

as the rate of change of interval default probability. Modelled bond value is based on the reduced form model 

of equation 1, and the decomposed interval default probabilities are substituted into that equation. 

Again, 𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡 | 𝑘

 and 𝑉𝑛
𝑚𝑜𝑑𝑒𝑙 | 𝑘

 are the market and modelled bond value of bond 𝑛 with rating 

category 𝑘 ;𝑁𝑘 is the total number of sample bonds of rating category 𝑘; ℎ𝑚 is the interval default probability 

of interval 𝑚; 𝑀 is the total number of intervals; 𝐶𝑣 is the specified variance ceiling. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡 | 𝑘

 − 𝑉𝑛
𝑚𝑜𝑑𝑒𝑙 | 𝑘

)

𝑁𝑘

𝑛=1

 2 

[7.a] 

Subject to:  

ℎ𝑚  ≥  0 ℎ𝑚  ≤  1 [7.b] 
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∑ (ℎ𝑚+1 − ℎ𝑚)2

𝑀−1

𝑚=1

 ≤  𝐶𝑣 

[7.c] 

As part of the optimization, market bond value – as opposed to modelled bond value – can also be 

based on a market based interest rate term structure instead – an interest rate term structure decomposed from 

market data. Instead of its quoted price, the market value of a bond is taken to be the resultant value when 

discounting the bond against the market based interest rate term structure. This assumes the decomposed 

market interest rate term structure ideally represents the market outlook, and this renders bond issues' residual 

modelling error equal to zero. The benefit of this is that it reduces idiosyncratic bond value error, thereby 

simplifying the problem. This also shifts the focus from merely a portfolio of bonds to an interest rate term 

structure instead, such that the objective may be expressed as decomposing the corresponding default 

probability term structure of an interest rate term structure, and vice versa, rather than decomposing the default 

probability term structure of a portfolio. 

Furthermore, when market bond value is based on a decomposed interest rate term structure, and the 

number of issues are sufficient, and adequately spaced in terms of maturity, it is also possible to calculate a 

default probability term structure by means of a sequential (bootstrapping) method that iteratively seeks the 

next interval default probability that minimizes modelled issue value error. The mechanics of the sequential 

method is easy to follow when considering an issue with such a maturity that it is only affected by one interval 

default probability – in this case, the default probability term structure (applicable to the issue) only spans one 

interval, and can be calculated through iterative searching. When ordering issues according to maturity, each 

subsequent issue will then also have only one outstanding interval default probability, if it adopts the default 

probability term structure of the preceding issues and intervals. 

 

1.5.4. Decomposing Rating Migration Matrices from Default Probability Term Structures 

The following stipulates the method to decompose rating migration matrices from default probability 

term structures, rather than from bond issue value. Decomposing from default probability term structures 

instead, may imply smoother data, and that the default probabilities of the rating categories are already known 

– according to equation 2, first interval default probability equals the default probability of the rating category 

(Barnard, 2017a; Barnard, 2017b). This in turn implies it is only necessary to decompose the non-default 

migration probabilities of the rating migration matrix. 

Equation set 8 contains the general optimization problem. The optimization problem optimizes a 

solution rating migration matrix, and interval default probabilities are modelled from the solution rating 

migration matrix by means of equation 2. The constraints included are: a) for each rating category, the sum of 

the probabilities of migrating from the particular category to any other non-default category, plus the 

probability of default of the category should equal 1 (equation 8.b, corresponding to equation 4.b); b) for each 

rating category, any probability of migrating to any other non-default category, as well as the probability of 

default of that particular category should be greater than or equal to zero (equation 8.c and equation 8.e, 

corresponding to equation 4.c); c) for each rating category, the probability of migrating to rating category 𝑛 

should be equal to or greater than the probability of migrating to rating category 𝑛 + 1, if rating category 𝑛 

succeeds the rating category; and for each rating category, the probability of migrating to rating category 𝑛 

should be equal to or greater than the probability of migrating to rating category 𝑛 − 1, if rating category 𝑛 

preceeds the rating category (equation 8.d, corresponding to equation 4.e); d) for each rating category with a 

rating category preceding it, the particular category's probability of default should be equal to or higher than 

that of the category preceding it (equation 8.f, corresponding to equation 4.d). Equation 8 would face the same 

issues discussed under section 1.5.2, and should be implemented with delta coefficients, as outlined under 

section 1.5.2 and equation 6. 

𝑁𝑘 is the number of intervals of rating category 𝑘; ℎ𝑛
𝑚𝑎𝑟𝑘𝑒𝑡 | 𝑘

 and ℎ𝑛
𝑚𝑜𝑑𝑒𝑙 | 𝑘

 are the decomposed 

market and modelled inteval default probabilities of interval 𝑛 and rating category 𝑘, respectively; 𝑃𝑚 → 𝑛
𝑚𝑖𝑔

 is 

the probability of rating category 𝑚migrating to rating category 𝑛; 𝑃𝑐𝑎𝑡𝑚

𝑑𝑒𝑓𝑎𝑢𝑙𝑡
 is the probability of rating category 

𝑚 defaulting. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (ℎ𝑛
𝑚𝑎𝑟𝑘𝑒𝑡 | 𝑘

 − ℎ𝑛
𝑚𝑜𝑑𝑒𝑙 | 𝑘

)

𝑁𝑘

𝑛=1

 2 

[8.a] 

Subject to:  
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∑ 𝑃𝑚 → 𝑛
𝑚𝑖𝑔𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑛=1  + 𝑃𝑐𝑎𝑡𝑚

𝑑𝑒𝑓𝑎𝑢𝑙𝑡
 =  1; 𝑚 ∈  { 1, . . , 𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡 } [8.b] 

∑ 𝑃𝑚 → 𝑛
𝑚𝑖𝑔𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑛=1  ≥  0; 𝑚 ∈  { 1, . . , 𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡 } [8.c] 

𝑃𝑛 → 𝑛−𝑥
𝑚𝑖𝑔

 ≥  𝑃𝑛 → 𝑛−𝑥−1
𝑚𝑖𝑔

 

𝑃𝑛 → 𝑛+𝑥
𝑚𝑖𝑔

 ≥  𝑃𝑛 → 𝑛+𝑥+1
𝑚𝑖𝑔

 

𝑛 ∈  (1, . . . 𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡) 

𝑛 −  𝑥 ≤  𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡; 𝑛 −  𝑥 −  1 ≥  1 

𝑛 +  𝑥 +  1 ≤  𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡; 𝑛 +  𝑥 ≥  1 

[8.d] 

𝑃𝑐𝑎𝑡𝑚

𝑑𝑒𝑓𝑎𝑢𝑙𝑡
 ≥  0 [8.e] 

𝑃𝑐𝑎𝑡𝑚

𝑑𝑒𝑓𝑎𝑢𝑙𝑡
≥ 𝑃𝑐𝑎𝑡𝑚−1

𝑑𝑒𝑓𝑎𝑢𝑙𝑡
; 𝑚 ∈  { 2, . . , 𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡 } [8.f] 

The overall optimization is conducted in two steps or procedures. The first step builds an initial 

solution rating migration matrix, by sequentially optimizing the rating migration matrix entries of individual 

rating categories, and by gradually increasing the percentage by which the rating migration matrix is applied 

when determining the interval intensities and thus the interval default probabilities of a rating category. An 

initial multiplier of 0 (0%) is used, and incremented to 1 (100%) through a step increment of 0.05 (5%). The 

effect of this is that rating categories initially ignore the rating migration matrix entries of other rating 

categories, and gradually adjust their rating migration matrix entries to that of the other rating categories. It 

helps to ease the inter-dependency between rating categories – the dependency of a rating category on other 

rating category rating migration matrix entries are controlled by the multiplier. The updated rating migration 

entries of each rating category are stored in a temporary buffer for the next iteration. The first step implements 

the optimization problem of equation 8, through delta-coefficients, and with additional delta-coefficients 

realized by sub-optimization problems to prevent redundant flows, as outlined under section 1.5.2. 

The outcome of the above step is a valid rating migration matrix that is partially optimized. To further 

optimize this initial solution, two different optimization problems are used. Both optimization problems build 

on equation 8. The first type simultaneously optimize the rating migration matrix entries of all rating 

categories. It uses delta-coefficients, but only utilizes the primary delta-coefficient set, and does not include 

delta-coefficients for secondary rating categories, and the corresponding additional sub-optimization problems. 

The second type sequentially optimize the rating migration matrix entries of individual rating categories. 

Additional delta-coefficients are used for secondary rating categories, through additional sub-optimization 

problems. It essentially corresponds to the method used to build the initial solution rating migration matrix. 

The only difference is that it does not use a multiplier – when optimizing the rating migration matrix entry of 

a rating category, the rating migration matrix entries of other rating categories are not factored, but used as is. 

The first optimization process attempts to simultaneously optimize rating migration matrix entries of 

rating categories against each other. The second optimization process attempts to optimize the rating migration 

matrix entry of an individual rating category against the existing rating migration matrix entries of other rating 

categories. The outcomes are not the same. The solution is further optimized and improved by iterating 

between the optimization processes. After optimizing the rating migration matrix entry of an individual rating 

category against the rating migration matrix entries of the other rating categories, it becomes feasible again to 

simultaneously optimize the rating migration matrix entries of all rating categories against each other, and vice 

versa. 

 

2. Methodology 

 

The study examines the power and accuracy of the proposed method to decompose rating migration 

matrices from market data, via decomposed default probability term structures. An existing, known rating 

migration matrix is utilized, and it is investigated to what extent the original rating migration matrix can again 

be surfaced by the method, when fed relevant data. The rating migration matrix naturally provides a reference 

default probability term structure per rating category (equation 2). The rating category default probability term 

structures, but not the original rating migration matrix, are provided to the method. In addition, the method is 

provided with a portfolio of bonds, a risk-free term structure, and rating category recovery rates. From this the 

value of the bonds can be calculated (equation 1), and the market value of the bonds are assumed equal to the 

calculated value. In turn, the value of the bonds are used to decompose an interest rate term structure for each 

rating category included in the bond portfolio, and a default probability term structure is decomposed for each 

rating category from the corresponding rating category interest rate term structures. The decomposed rating 

category default probability term structures should and do correspond with the reference rating category default 

probability term structures. From the rating category default probability term structures, the default probability 
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of each rating category is obtained, such that it is only necessary to decompose the non-default rating migration 

probabilities of the rating migration matrix. 

Seven principal credit ratings are considered – [AAA, AA, A, BBB, BB, B, CCC]. The study uses a 

rating migration matrix from Elton et al (2001). The rating migration matrix is slightly adapted where it violates 

some of the constraints mentioned as part of equation 4 and 8. Table 2 and table 3 show the original and 

adapted rating migration matrix, respectively. In all cases that bond value is modelled, equation 1 is used to 

calculate the value of the bonds. Recovery rates are taken from Elton et al (2001). Table 1 shows the recovery 

rates used. The risk-free rate used is taken from Elton et al (2001) and Huang and Huang (2012). An artificial 

portfolio of bonds is used, and the coupons of the bonds are set to 7.5. For each rating category, ten intervals 

are considered, and the maturity of the issues are such that one issue matures per interval. Thus, 10 issues are 

used per rating category, and 70 issues are used overall. 

The actual decomposition of the rating category default probability term structures from the price data 

of the bonds, via the rating category interest rate term structures, is not conducted here, but taken from Barnard 

(2017b). 

A simple barrier method is utilized to implement all optimization problems. However, an algorithm is 

used to iteratively switch between optimization equations, and the best result per iteration is used as the initial 

solution of the next iteration. Equation 9 notes the optimization equations used, in extension to the conventional 

least-squares problem expression of equation 8.a, for example. Nevertheless, all optimization equation results 

are still converted to, expressed, and compared in terms of the principal least-squares problem expression. 

Equation 9.c and equation 8.a are identical. Equation 9.a applies a multiplier to the difference between 

reference and modelled values. Equation 9.b considers absolute modelling error, instead of squared modelling 

error, and equation 9.d and 9.e respectively penalize positive and negative modelling error more strongly. 

𝑦 =  ∑(𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡  −  𝑉𝑛

𝑚𝑜𝑑𝑒𝑙)

𝑁

𝑛

  ⁄ 𝑎 

𝑎 ∈ [1, 105, 1010] 

[9.a] 

𝑧 =  | 𝑦 | [9.b] 

𝑧 =  (𝑦)2 [9.c] 

𝑧 =  (𝑦)𝑏1  +  (𝑦)𝑏2 

𝑏 ∈ [(4, 3), (8, 6)] 

[9.d] 

𝑧 =  (𝑦)𝑏1  −  (𝑦)𝑏2 

𝑏 ∈ [(4, 3), (8, 6)] 

[9.e] 

 
Table 1. Recovery rates as percentage of par (Elton et al, 2001) 

AAA AA A BBB BB B CCC 

68.34 59.59 60.63 49.42 39.05 37.54 38.02 

 

Table 2. Rating migration probability – Standard and Poor's (Elton et al, 2001) 

 AAA AA A BBB BB B CCC Default 

AAA 90.788 8.291 0.716 0.102 0.102 0.000 0.000 0.000 

AA 0.103 91.219 7.851 0.620 0.103 0.103 0.000 0.000 

A 0.924 2.361 90.041 5.441 0.719 0.308 0.103 0.103 

BBB 0.000 0.318 5.938 86.947 5.302 1.166 0.117 0.212 

BB 0.000 0.110 0.659 7.692 80.549 8.791 0.989 1.209 

B 0.000 0.114 0.227 0.454 6.470 82.747 4.086 5.902 

CCC 0.228 0.000 0.228 1.251 2.275 12.856 60.637 22.526 

Default 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000 
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Table 3. Rating migration probability adapted from Standard and Poor's (Elton et al, 2001) 

 AAA AA A BBB BB B CCC Default 

AAA 90.789 8.291 0.716 0.102 0.102 0.000 0.000 0.000 

AA 0.103 91.22 7.851 0.620 0.103 0.103 0.000 0.000 

A 0.924 2.361 90.041 5.441 0.719 0.308 0.103 0.103 

BBB 0 0.318 5.938 86.947 5.302 1.166 0.117 0.212 

BB 0 0.110 0.659 7.692 80.550 8.791 0.989 1.209 

B 0 0.114 0.227 0.454 6.470 82.747 4.086 5.902 

CCC 0.228 0.228 0.228 1.251 2.275 12.856 60.408 22.526 

Default 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000 

 

 
Figure 3. Risk-free and risk-bearing term structures 

 

3. Analysis 

 

The outcome of the first step that seeks to develop an applicable initial solution rating migration 

matrix, by sequentially optimizing individual rating category rating migration matrix entries, and iteratively 

incrementing the rating migration matrix multiplier, is discussed first. Because the number of steps are too 

many, the individual rating migration matrices corresponding to the increments are not shown. Instead, the 

rating migration matrix progressions of each rating category are shown in figure 4 to 10. In the discussion 

below, migration probability is used to refer to the rating migration probability of a rating category rating 

migration matrix entry in short. 

The figures show that the primary rating category of each rating category rating migration matrix entry, 

and thus of each figure, does not necessarily dominate, due to the multiplier factor being applied. Not all the 

figures commence with a strong migration probability for the primary rating category: some of these migration 

probabilities are below 0.4, compared to the migration probabilities of the reference rating migration matrix, 

which are above 0.8 on average. Neither are the extent of the volatility or changes in migration probabilities 

necessarily dependent on the multiplier factor – the tail of the figures experience as much volatility as the head 

of the figures. Both volatile and stable sections or intervals exist, over which the migration probabilities across 

steps or increments are rather volatile or stable, depending on the interval. The primary rating category 

migration probability may oscillate excessively between its initial value and terminating value. For example, 

figure 5 shows that the primary rating category (AA) migration probability oscillates twice between an initial 

value around 0.4, and a terminating value around 0.8. The figures show that rating categories respond to the 

rating migration matrix entries of other rating categories, per step, and are particularly dependent on the rating 

migration matrix entries of their neighbour rating categories. 

Table 4 shows the terminating initial solution rating migration matrix. It has an error sum of less than 

0.025. Although it may seem low, the error sum should be interpreted with caution. Table 4 shows that the 

rating migration matrix still significantly differ from the reference rating migration matrix of table 3. Rating 
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categories A and B stand out as their rating migration matrix entries deviate the most from the reference rating 

migration matrix of table 3, particularly in terms of the primary rating category migration probability. 

 

 
Figure 4. Rating migration matrix progression – AAA 

 

 
Figure 5. Rating migration matrix progression - AA 

 

 
Figure 6. Rating migration matrix progression – A 
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Figure 7. Rating migration matrix progression – BBB 

 

 
Figure 8. Rating migration matrix progression - BB 

 

 
Figure 9. Rating migration matrix progression – B 
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Figure 10. Rating migration matrix progression - CCC 

 

Table 4. Initial solution rating migration matrix of step 1 

 AAA AA A BBB BB B CCC Default 

AAA 8.949e-01 1.042e-01 1.880e-04 1.880e-04 1.880e-04 1.880e-04 1.880e-04 0.000 

AA 3.008e-05 9.680e-01 1.468e-02 1.468e-02 8.895e-04 8.895e-04 8.895e-04 0.000 

A 3.000e-05 4.185e-01 4.185e-01 1.474e-01 4.869e-03 4.869e-03 4.869e-03 0.103 

BBB 3.000e-05 2.378e-02 6.978e-02 8.724e-01 1.061e-02 1.061e-02 1.061e-02 0.212 

BB 3.000e-05 3.00e-05 3.000e-05 2.691e-01 6.009e-01 5.891e-02 5.891e-02 1.209 

B 3.000e-05 3.000e-05 3.000e-05 9.460e-02 2.821e-01 2.821e-01 2.821e-01 5.902 

CCC 1.608e-02 1.608e-02 1.608e-02 1.608e-02 1.608e-02 1.608e-02 6.783e-01 22.526 

Default 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000 

 

Table 5 shows the solution rating migration matrix after the first completion of the first type of 

optimization sub-process of the second step that seeks to further optimize the solution. The rating migration 

matrix entries of all rating categories were simultaneous optimized, with no additional delta-coefficients over 

and above the basic delta-coefficients. The solution has a squared error sum of less than 2.7e-08, and figures 

11 to 17 show that the reference and solution default probability term structures are virtually identical. Overall, 

significant differences between the reference rating migration matrix and solution rating migration matrix still 

exists, and rating category A and B have not yet significantly corrected. The results show that this sub-process 

is good at adjusting rating category rating migration matrix entries in response to each other, without 

significantly adjusting individual rating migration matrix entries per se. In figures 11 to 17, the “R” postscript 

depicts the reference term structure. 

 
Table 5. Intermediate solution rating migration matrix 

 AAA AA A BBB BB B CCC Default 

AAA 9.131e-01 8.059e-02 2.596e-03 2.596e-03 1.029e-03 4.494e-05 2.964e-09 0.000 

AA 9.579e-02 7.538e-01 1.488e-01 7.441e-04 7.440e-04 2.875e-05 1.000e-09 0.000 

A 1.748e-05 3.858e-01 3.903e-01 2.111e-01 5.123e-03 5.122e-03 1.550e-03 0.103 

BBB 2.180e-19 7.239e-19 9.378e-02 8.198e-01 7.907e-02 2.807e-03 2.436e-03 0.212 

BB 1.228e-14 9.495e-14 1.952e-02 6.405e-02 8.047e-01 9.045e-02 9.195e-03 1.209 

B 2.342e-15 6.776e-15 1.076e-14 1.797e-02 4.777e-02 8.360e-01 3.924e-02 5.902 

CCC 1.026e-17 1.164e-03 1.273e-03 1.784e-02 1.787e-02 1.305e-01 6.060e-01 22.526 

Default 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000 
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Figure 11. Reference and solution default probability term structures - AAA 

 

 
Figure 12. Reference and solution default probability term structures – AA 

 

 
Figure 13. Reference and solution default probability term structures - A 
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Figure 14. Reference and solution default probability term structures - BBB 

 

 
Figure 15. Reference and solution default probability term structures – BB 

 

 
Figure 16. Reference and solution default probability term structures - B 
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Figure 17. Reference and solution default probability term structures - CCC 

 

Table 6 shows the solution rating migration matrix after the completion of a number of iterations of 

the first and second type of optimization sub-processes of the second step that seeks to further optimize the 

solution. At this point, the individual rating category rating migration matrix entries had  already been 

sequentially and jointly optimized, a number of iterations. The solution has an error sum of less than 5e-16. 

Because of computation cost, the optimization was terminated at this point. Table 7 shows the absolute 

difference between the reference and solution rating migration matrix. Table 8 shows the maximum absolute 

difference between the reference and solution rating migration matrix of each rating category. Table 9 shows 

the sum of the absolute difference between the reference and solution rating migration matrix of each rating 

category. Table 10 shows the absolute error sum between the reference and modelled default probability term 

structures of each rating category. From table 8, the highest rating migration probability error is 1.4011%, and 

from table 9, the highest rating migration probability error sum is 3.4372%. 

 
Table 6. Terminating solution rating migration matrix 

 AAA AA A BBB BB B CCC Default 

AAA 90.4983 8.79833 0.48167 0.11031 0.10961 0.00167 0.00015 0.000 

AA 0.71397 89.8189 8.90377 0.33068 0.15537 0.07478 0.00249 0.000 

A 1.28678 1.52366 90.6748 5.26536 0.7509 0.29095 0.10451 0.103 

BBB 0.04631 0.20946 6.02187 86.9229 5.30658 1.16364 0.11721 0.212 

BB 0.03347 0.03349 0.71615 7.67656 80.5527 8.78952 0.98913 1.209 

B 0.00577 0.09902 0.23989 0.44981 6.47086 82.7466 4.08604 5.902 

CCC 0.14832 0.14832 0.14832 1.26071 2.27524 12.8571 60.636 22.526 

Default 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000 

 

Table 7. Solution, reference rating migration matrix absolute difference 

 AAA AA A BBB BB B CCC Default 

AAA 0.2907 0.5073 0.2343 0.0083 0.0076 0.0017 0.0002 0.0000 

AA 0.6110 1.4011 1.0528 0.2893 0.0524 0.0282 0.0025 0.0000 

A 0.3628 0.8373 0.6338 0.1756 0.0319 0.0170 0.0015 0.0000 

BBB 0.0463 0.1085 0.0839 0.0241 0.0046 0.0024 0.0002 0.0000 

BB 0.0335 0.0765 0.0571 0.0154 0.0027 0.0015 0.0001 0.0000 

B 0.0058 0.0150 0.0129 0.0042 0.0009 0.0004 0.0000 0.0000 

CCC 0.0797 0.0797 0.0797 0.0097 0.0002 0.0011 0.2280 0.0000 

Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 8. Rating category maximum rating migration matrix error (percentage) 

AAA AA A BBB BB B CCC 

0.5073 1.4011 0.8373 0.1085 0.0765 0.0150 0.2280 

 

Table 9. Rating category total rating migration matrix error sum (percentage) 

AAA AA A BBB BB B CCC 

1.0502 3.4372 2.0600 0.2699 0.1869 0.0391 0.4781 

 

Table 10. Absolute rating category reference versus modelled default probability term structure 

AAA AA A BBB BB B CCC 

2.572120E−06 4.267200E−07 4.237900E−07 3.603700E−07 8.550100E−07 1.306600E−07 2.233700E−07 

 

4. Conclusion 

 

The study built on previous research that decomposes rating category default probability term 

structures from rating category interest rate term structures. A method to decompose rating migration matrices 

from market price data, via default probability term structures, was proposed and evaluated. A reference rating 

migration matrix was used to evaluate the method. Overall, the results are more than satisfactory, and the 

method promises to be accurate. 

Future research can investigate the application of the method to market data. The outcome should be 

insightful in itself, and can be used to evaluate historical rating migration matrices commonly devised by rating 

agencies, and to form a better understanding of the default probability term structures embedded in market 

data. 
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