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This paper aims to analyse the market risk (estimated by Value-at-Risk) on the 

Romanian capital market using modern econometric tools to estimate volatility, 

such as EWMA, GARCH models. In this respect, I want to identify the most 

appropriate volatility forecasting model to estimate the Value-at-Risk (VaR) of a 

portofolio of representative indices (BET, BET-FI and RASDAQ-C). VaR depends 

on the volatility, time horizon and confidence interval for the continuous returns 

under analysis. Volatility tends to happen in clusters. The assumption that volatility 

remains constant at all times can be fatal. It is  determined that the most recent data 

have asserted more influence on future volatility than past data. To emphasize this 

fact, recently, EWMA and GARCH models have become critical tools in financial 

applications. The outcome of this study is that GARCH provides more accurate 

analysis than EWMA.This approach is useful for traders and risk managers to be 

able to forecast the future volatility on a certain market. 
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1. Introduction 

 

Value at Risk (VaR) is one of the widely used risk measures. VaR estimates the maximum loss of 

the returns or a portfolio at a given risk level over a specific period. VaR was first introduced in 1994 by 

J.P.Morgan and since then it has become an obligatory risk measure for thousands of financial institutions, 

such as investment funds, banks, corporations, and so on. 

Classical VaR methods have several drawbacks. These methods include historical simulation, 

unconditional approaches and RiskMetrics. For instance, historical simulation method always assumes joint 

normality of the returns. On the other hand, the basic driving principle of the historical simulation method is 

its assumption that the VaR forecasts can be based on historical data. In the unconditional approach I use a 

standard deviation to estimate VaR and assume that the volatility constant over time. However, in reality 

these assumptions do not hold in most cases.  

RiskMetrics measure the volatilty by using EWMA model that gives the heaviest weight on the last 

data. Exponentially weighted model give immediate reaction to the market crashes or huge changes. 

Therefore, with the market movement, it has already taken these changes rapidly into effect by this model. In 
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this way EWMA responds the volatility changes and EWMA does assume that volatility is not constant 

through time. 

The above models do not, however, incorporate the observed volatility clustering of returns, first 

noted by Mandelbrot (1963). The most popular model taking account of this phenomenon is the 

Autoregressive Conditional Heteroscedasticity (ARCH) process, introduced by Engle (1982) and extended 

by Bollerslev (1986). 

Considering the above models, this study aims to estimate Value-at-Risk (VaR) of a portfolio of 

three representative indices on the Romanian capital market (BET, BET-FI and RASDAQ-C) using the most 

appropriate volatility forecasting model.  

The data are daily (trading days) and cover the period from March 4, 2009 (date of the minimum 

reached on the capital market in Romania during the crisis) to November 30, 2013 (date of this study), for a 

total of 1218 daily observations. 

The paper is structured as follows: The first part treats, from theoretical point of view, the concept 

and methodology of VaR and the volatility forecasting models. The second part presents the most relevant 

works in this field in Romania and abroad. The third part describes the data and methodology used. Also, 

results are interpreted. The last part summarizes the most important findings of the study. 

 

2. Theoretical Framework  

 

The VaR is a useful measure of risk. It was developed in the early 1990s by the corporation 

JPMorgan. According to Jorion (2001, p 19) “VaR summarizes the expected maximum loss over a target 

horizon with a given level of confidence interval.” 

In financial market, the typical time horizon is 1 day to 1 month. Time horizon is chosen based on 

the liquidity capabilitity of financial assets or expectations of the investments. Confidence level is also 

crucial to measure the VaR number. Typically in the financial markets, VaR number calculates between 95% 

to 99% of confidence level. Confidence level is choosen based on the objective such as Basel Committee 

requests 99% confidence level for banks regulatory capital.  

In practice a variety of methods can be applied for calculation of VaR. These methods rely upon 

different assumptions.  All VaR techniques can be divided into 2 broad categories:  

a) Historical approaches, which rely on historical data and divide further on parametric and non-parametric 

models.  

 Parametric models involve imposition of specific distributional assumptions on risk factors. Log-

normal approach is the most widely used parametric model, which implies that market prices 

and rates are log-normally distributed. This kind of distribution is characterized only by 2 

parameters: mean and standard deviation. Under the assumption of normality the VaR can be 

calculated as: 

𝑉𝑎𝑅 = 𝑍 ∗ 𝜎 ∗ √𝑇 
where:  Z - the quantile of normal distribution 

           T - holding period 

σ – standard deviation of a risk factor 

 

So, for the assessment of risk one needs only to know the volatility, which can be in turn estimated 

with the help of various techniques. The most popular are equally variance-covariance, weighted MA, 

EWMA and GARCH approaches. MA is simple a usual historical deviation, calculated over specific past 

period. EWMA on the other hand puts more weights on recent observations. This approach is justifiable 

when distant past influences the near future negligible (the situation of changing market conditions).  

 Non-parametric approaches use historical data directly without any assumptions of risk factors’ 

distributions. Historical Simulation is the easiest non-parametric model for practical 

implementation and assumes that risk factor volatility is a constant. 

 

b) Non-historical approaches implies specific and explicitly given statistical model for distribution of the 

risk factors. Monte-Carlo simulation is a best-known representative of this class of models.  

 

According to Allen (2004, p.54), Log-normal model involves estimation of risk factor distribution 

parameters using all available data. This approach assumes that risk factors are log-normally distributed. 
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Also, variance-covariance and weighted MA approaches use only the historical deviation and for this reason 

they are rarely applied in practice. Mostly EWMA and GARCH are used. 

 

 Exponentially Weighted Moving Average: 

 

In real life applications, some financial models assume the volatility is constant through time. This 

may be a mistake or can be misleading the results. According to Butler (1999, p. 190) “any financial assets 

that could currently have a lower volatility may have a much higher volatility in the future”. In order to solve 

this problem, Butler (1999, p. 200) considers that risk mangers use EWMA model to give more weight on 

the latest data and less on the previous data. 

Allen (2004) describes EWMA (exponential smoothing) as the improved method for predicting risk 

factor future volatility. Weights on more distant historical observations decline exponentially from initial 

weight to zero at the rate which is determine by decay factor (smoothing parameter). 

This method was developed by J.P. Morgan (1996). The conditional volatility is estimated based on 

the following method: 

𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝜀𝑡−1
2  

where 𝜎𝑡
2 is the forecast of conditional volatility,  𝜆 = 0.94 is the decay parameter (𝜆 is set at 0.94 for daily 

data as suggested in RiskMetrics), and 𝜀𝑡−1 is the last period residual which follows the standard normal 

distribution.  

t  is a random variable (in this paper expressed in returns) with a zero mean and variance 

conditional on the past time series 1 ,..., 1t . 

t = 𝑟𝑡 -  𝜇  

Where: 

𝑟𝑡 - is continuous composed return of index at time t; 

𝜇 – is the mean of the returns 

 

The VaR is calculated as follows: 

𝑉𝑎𝑅𝑡 = 𝑍𝑝𝜎𝑡 

where 𝑍𝑝is the standard normal quantile\ for 𝑝 = 0.01; 0.05; 0.1; 𝑒𝑡𝑐 

Note that EWMA estimation differs for various smoothing parameters. Under a weighting scheme 

with λ close to 1 recent information is more relevant and effective sample is shorter then under a weighting 

scheme with low λ. Optimal value of λ can be estimated using Maximum Likelyhood Method.  

The RiskMetrics model is relatively easier to implement than other methods. However, the 

RiskMetrics model is subject to criticism because it ignores the asymmetric effect, the violation of the 

normality and risk in the tails of the distribution as often observed in the equity return data.  

As a remedy, I can apply more complex and advanced models for determining the volatility to get a 

better proxy of the tail distribution. On the developed capital markets there are applied different models to 

estimate volatility. 

Various advanced techniques for obtaining estimators of volatility have been continuously 

developed over the past period. They range from very simple models using the so-called random-walk 

assumptions to models regarding complex conditional heteroskedastic ARCH group (up to GARCH and 

derivatives thereof). 

 

 Heteroskedasticity models 

 

These models are divided into two categories: conditional models and unconditional models (or 

independent time variable). Although, there have been written a fairly extensive literature on the issue of 

independent volatility over time (homoskedasticity), practitioners have turned their attention to the second 

category approach of this issue, considering it more plausible, at least in terms of intuitive: volatility is not 

the same from one moment to another. 

The most discussed univariate volatility models are autoregressive models with conditional 

heteroskedasticity (ARCH - Autoregressive conditional heteroskedasticity) proposed by Engle (1982) and 

the general GARCH (Generalized Autoregressive conditional heteroskedasticity) proposed by Bollerslev 

(1986). Many of these extensions have gained further importance as Exponential - GARCH (EGARCH) 



Opreana, C.I., 2013. Estimation of Value-at-Risk on Romanian Stock Exchange Using Volatility Forecasting Models. 

Expert Journal of Finance, 1(1), pp.4-18 

7 

 

proposed by Nelson (1991), which empirically explains an asymmetric reaction of volatility to the impact of 

shocks in the market. Generally, each model has its own advantages and disadvantages, so, with a large 

number of models, all designed to serve to the same purpose, it is important to distinguish and correctly 

identify each model, with each features in order to establish the one who gives the best predictions. Jorion 

(2001, p. 170) states that the models for calculating VaR that use GARCH are more precise, principally in 

cases where there are volatility clusters. 

In the following, I will make a brief presentation of these models. 

 

ARCH(1) 

The model was introduced in 1982 by the  econometrician R. Engel in the journal Econometrica, and 

proposed a change in vision about how to estimate volatility. He said the standard deviation, by its way of 

calculating, gives equal weight (1 / n) to any historical observations considered in the determination of 

volatility. 

Engel's model solves this inconvenience, giving more weight to the most recent observations and 

reducing weights of more distant observations. Thus, the variance (dispersion) from whose square root is 

resulting volatility, is expressed as: 
2
t =  + 

2

1t  

where: 
2

t
-  variance of the dependent variable in the current period; 

  - constant dispersion equation; 

  - coefficient "ARCH"; 

1t – residuals from the previous period;  

 

GARCH(1,1)  

It was proposed by T. Bollereslev (Engel's student) in 1986 in the Journal of Econometrics, and is 

part of a larger class of models GARCH (q, p). But it enjoys a great popularity among practitioners because 

of its relative simplicity. This model are similar to Engel's model. Variance formula is: 
2
t =  + 

2
1t + 

2

1t  

where: 
2

t
-  variance of the dependent variable in the current period; 

  - constant dispersion equation; 

  - coefficient "ARCH"; 

1t – residuals from the previous period; 

2

1t  - variance of the dependent variable in the previous period; 

  - coefficient “GARCH”. 

The model suggests that the variance forecast is based, in this case, on the most recent observation of 

assets return and on the last calculated value of the variance. The general model GARCH (q, p) calculates the 

expected variance on the latest q observations and the latest p estimated variances. 

In the GARCH (1,1) model, described above, the first number shows that the residual terms of the 

previous period acts on dispersion and the second number shows that the dispersion of the previous period 

has influence on current dispersion. In fact, for very large series, GARCH (1.1) can be generalized to 

GARCH (p, q). 

Because this application refers to volatility analysis of a selected portfolio, I will focus only on the 

dispersion equation. The model can be used successfully in volatile situations. GARCH model includes in its 

equation both terms and the phenomenon of heteroskedasticity. It is also useful if the series are not normally 

distributed, but rather they have "fat tails". No less important is that confidence intervals may vary over time 

and therefore more accurate intervals can be obtained by modeling of the dispersion of residual returns. 

Different heteroskedastic volatility models (ARCH, GARCH, EGARCH, etc.) is based on historical 

prices. One advantage of these models from the implied volatility is given by the relatively recent research in 

finance, which shows a better estimation of the heteroskedasticity models from the initially more preferred 

implied volatility. 
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In this paper I use two univariate models: ARCH and GARCH in estimating VaR. VaR calculation 

consists of two steps: 

- I forecast volatility using the models mentioned above; 

- Calculate VaR based on the conditional volatility prediction: 

𝑉𝑎𝑅𝑡 = 𝑍𝑝𝜎𝑡 

Where: 

- 𝜎𝑡  is the volatility estimated from heteroskedastic volatility models; 

- 𝑍𝑝 is p% quantile from the normal distribution. 

 

After using different techniques in VaR estimation I need to check their predictive accuracy using 

various statistical tests. There are many VaR methodologies, and it is necessary to find the best model for 

risk forecasting. For the purposes of this paper, I explain and use “Violation ratio” of Danielsson (2011, 

p.145) for evaluating the quality of VaR forecasts. 

If the actual loss exceeds the VaR forecast, then the VaR is considered to have been violated. The 

violation ratio is the sum of actual exceedences divided by the expected number of exceedences given the 

forecasted period. The rate is calculated as: 

 

𝑉𝑅 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠
=  

𝐸

𝑝 𝑥 𝑁
 

Where: 

- E is the observed number of actual exceedences 

- p is the VaR probability level, in this case p=0.05 or 0.01 

- N is the number of observations used to forecast VaR values. 

 

3. Literature review 

 

There are numerous research papers dedicated to analysis, development and practical application of 

the VaR methodology. 

The VaR result could vary on the method chosen and the assumption of the correlation. Although 

VaR and other methods are accepted as effective risk management tools, they are not sufficient enough to 

monitor and control risk at all. The hope is to have only one powerful risk mesurment program that can solve 

the problems of investors and institutions, and able to measure risk effectively and systematically. 

Jorion (2001) has mentioned the intricate parts of VaR calculations in his work. During the time 

when portfolio position is assumed to be constant that in reality does not apply to practical life. The 

disadvantage of VaR is it cannot determine where to invest. VaR simply illustrates the various speed of risk 

that are embbeded from the derivative instruments. 

The second and third Basel Accord (International Convergence of Capital Measurement and Capital 

Standards, 2006 and Revisions to the Basel II Market Risk Framework, 2009) have laid down market risk 

capital requirements for trading books of banks. The market risk capital calculations can be done using either 

the standardized measurement method or the Internal Models approach. The internal models approach allows 

banks to calculate a market risk charge based on the output of their internal Value-at-risk (VaR) models.  

Manganelli and Engle (2001) review the assumptions behind the various methods and discuss the 

theoretical flaws of each. The historical simulation (HS) approach has emerged as the most popular method 

for Value-at-risk calculation in the industry.  

Hendricks (1996) compared twelve different VaR methods, namely equally weighted moving 

average (EQMA), exponentially weighted moving average (EWMA), and historical simulation (HS). For the 

99% VaR it was observed that the HS approach provided better coverage than the other two VaR methods.  

Hull and White (1998) improve the HS method by altering it to incorporate volatility updating. They 

adjust the returns using a conditional volatility model like GARCH or EWMA. According to these tests, the 

GARCH (1,1) model is suitable to estimate the conditional volatility, and is thus used to calculate the VaR. 

In this paper I continue the scientific activity, aiming to identify the most appropriate volatility 

forecasting model to estimate the Value-at-Risk (VaR) of a portofolio of representative indices of Bucharest 

Stock Exchange. Given the emerging nature of the capital market in Romania, for representativity it was 

selected the period from the minimum reached during the Romanian capital market as a result of the recent 

financial crisis till the time of the present analysis. 
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The originality of our contribution to the current state of research in this field is generated by the 

following: 

 I selected a portfolio of indices, so that it is included characteristics for the entire capital market 

in Romania (inclusion in the study of BET, BET-FI and RASDAQ-C indices); 

 study was not just about applying a single methodology, being tested several models in order to 

select the most appropriate; 

 study refers to recent years (though, being considered a representative number of observations) 

which determines the actuality of conclusions. 

 

4. Data series and methodology 

 

For portfolio construction, there were used data since March,04 2009 (date of the minimum reached 

on the capital market in Romania during the crisis) – to November, 30 2013 (date of this study), comprising 

a total of 1218 daily observations. I used in our analysis BET, BET-FI and RASDAQ-C indices. 

The portfolio was selected with the following weights: 40% BET, BET-FI 30%, 30% RASDAQ-C. 

Criteria considered in determining these weights are based on the following assumptions: risk diversification 

by selecting indices whose composition covers a wide range of capital market in Romania, the weight of the 

average trading volume for the companies included in the indices. 

In this paper, I use an out-of-sample VaR estimates to identify the most appropriate risk forecasting 

model. Out-of-sample VaR estimates are obtained based on the previous years’observations (values since 

March, 04 2009 to December, 31 2012) and are compared with the data from the last year (January, 02 2013 

– November, 30 2013). 

Based on primary data, there were calculated daily returns of the portfolio for the selected indices. 

Return was calculated using the following formula: 

𝑟𝑡 = ln
𝑝𝑡

𝑝𝑡−1
= ln 𝑝𝑡 − ln 𝑝𝑡−1  

Where: 

𝑟𝑡 is continuous composed return of index at time t, pt is the index value at time t. 

 

The reason I’ve decided to use logarithmic returns in our study was highlighted by Strong (1992, p. 

533) thus: "there are both theoretical and empirical reasons for preferring logarithmic returns. Theoretically, 

logarithmic returns are analytically more tractable when linking together sub-period returns to form returns 

over long intervals. Empirically, logarithmic returns are more likely to be normally distributed and so 

conform to the assumptions of the standard statistical techniques." 

For this study, in the first phase I proceed to analyze the descriptive statistics of daily returns of 

selected indices and portfolio, then I apply various tests of normality and stationarity to highlight the 

characteristics of daily returns series. The next step will be to test the presence of ARCH signature in the 

indices portfolio. If I notice the signature ARCH, I will proceed to analyze the volatility through GARCH 

methodology. Finally, I will estimate the Value-at-Risk of the selected portfolio by all methods described in 

this study in order to select the most appropriate model. 

For this analysis, I use as technical support the application Eviews7. 

 

Next, I present a primary statistical data. In the following table I consider daily returns of BET, 

BET-FI and RASDAQ-C as well as portfolio selected. 

 
Table 1. Descriptive Statistics 

 

DAILY_RETURN_

BET 

DAILY_RETURN

_BET_FI 

DAILY_RETURN

_RASDAQ_C DAILY_RETURN_PORTFOLIO 

 Mean  0.001026  0.001133 -0.000301  0.000989 

 Median  0.000845  0.000712  0.000187  0.000903 

 Maximum  0.105645  0.138255  0.048494  0.115302 

 Minimum -0.116117 -0.149741 -0.198265 -0.132069 

 Std. Dev.  0.017065  0.025048  0.009654  0.021088 

 Skewness -0.169040  0.101382 -8.846412 -0.018240 

 Kurtosis  9.507520  8.073974  185.6334  8.188827 

     

 Jarque-Bera  1712.639  1040.049  1357942.  1085.985 
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 Probability  0.000000  0.000000  0.000000  0.000000 

     

 Sum  0.993280  1.096817 -0.291609  0.957507 

 Sum Sq. Dev.  0.281601  0.606709  0.090122  0.430035 

     

 Observations  968  968  968  968 

Source: author calculations 

 

The table also indicates that all 3 indices and the selected portfolio not follow a normal distribution. 

This fact is highlighted by the Skewness and Kurtosis indicator values. 

Skewness normal distribution is zero. A positive Skewness series shows that the distribution is right 

asymmetry. For a negative Skewness, situation is reversed. 

For normal distribution kurtosis (who shows "fat tails" or how much the maximum and minimum 

values deviate from their average) is 3.For K less than 3, distribution is flatter than normal (platykurtic) and 

for k greater than 3 distribution is higher (leptokurtic). 

For the selected portfolio, skewness is –0.018 which shows an asymmetry to the left of distribution 

returns, sign that on certain days there were very high quotes. Kurtosis is 8.18 which indicates that the 

distribution is higher than normal. Jarque-Bera test value is 1085 and the attached test probability is 0%. Test 

values are quite far from the corresponding normal distribution, reason due to which I say that the series is 

not normally distributed. 

This conclusion is strengthened by the following graphs: Histogram Graph and QQ-Plot Graph: 

 

 
Figure 1. Histogram Graph 

Source: author calculations 

 

 
 

Figure 2. QQ Plot 

Source: author calculations 
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QQ-plot is a method used to compare two distributions, specifically, is the graph of the empirical 

distribution against a theoretical distribution (in this case, the normal distribution). If empirical distribution 

would be normal, should result QQ chart is first bisectrix, in this case is different from the normal 

distribution. 

A more detailed inspection of the evolution of daily returns is performed using the following graph: 

 

 
Figure 3. Returns Evaluation 

Source: author calculations 

 

I see the chart above that there are pronounced extremities, another indication that the series is not 

normally distributed and an indication of possible "ARCH" signatures. 

According to the ADF and Phillips-Perron tests, daily returns series are stationary for every level of 

relevance. Stationarity is defined as a quality of a process in which the statistical parameters (mean and 

standard deviation) of the process do not change with time. Otherwise, Shocks have transitory effects. 

 
Table 2. ADF Test 

Null Hypothesis: DAILY_RETURN_PORTOFOLIO has a unit root 

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=21) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -29.19315  0.0000 

Test critical values: 1% level  -3.436892  

 5% level  -2.864317  

 10% level  -2.568301  

     
       

Source: author calculations 

 

Table 3. Phillips-Perron Test 

Null Hypothesis: DAILY_RETURN_PORTOFOLIO has a unit root 

Exogenous: Constant   

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel 

     
        Adj. t-Stat   Prob.* 

     
     Phillips-Perron test statistic -29.17246  0.0000 

Test critical values: 1% level  -3.436892  

 5% level  -2.864317  
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 10% level  -2.568301  

     
     Source: author calculations 

 

The above analysis is very useful in describing the series and economic phenomena. However, for 

certainty analysis, I test this ARCH signature with radical correlogram of daily returns. Number of lags used 

is 15. The column labeled AC remark serial correlation coefficients, while the last column I have the 

probability to accept the hypothesis "there is no ARCH effects" (which is actually null hypothesis). If I 

notice the signature ARCH, I will proceed to analyze the volatility through GARCH methodology.  

 
Table 4. Correlogram of radical returns 

Sample: 1 968      

Included observations: 966     

       
       Autocorrelation Partial Correlation  AC PAC Q-Stat Prob 

       
       *****|      | *****|      | 1 -0.654 -0.654 414.43 0.000 

|*     | ***|      | 2 0.161 -0.466 439.55 0.000 

|      | **|      | 3 -0.002 -0.340 439.55 0.000 

|      | ***|      | 4 -0.045 -0.359 441.55 0.000 

|      | **|      | 5 0.072 -0.294 446.58 0.000 

|      | *|      | 6 -0.007 -0.148 446.62 0.000 

*|      | *|      | 7 -0.066 -0.159 450.92 0.000 

|      | *|      | 8 0.052 -0.167 453.55 0.000 

|      | *|      | 9 0.002 -0.111 453.55 0.000 

|      | |      | 10 -0.011 -0.057 453.68 0.000 

|      | *|      | 11 -0.010 -0.067 453.78 0.000 

|      | |      | 12 0.014 -0.051 453.96 0.000 

|      | |      | 13 0.004 0.004 453.98 0.000 

|      | |      | 14 -0.025 -0.029 454.59 0.000 

|      | |      | 15 0.035 -0.010 455.78 0.000 

       
       Source: author calculations 

 

Note that the null hypothesis probability value is 0, indicating that I can reject the null hypothesis 

and providing information there are ARCH effects. 

The next step is finding the equation that best describes the portfolio volatility. In this respect, I 

estimate the equation of volatility with ARCH (1) and GARCH (1,1). 

For volatility calculated by GARCH models, there was used Generalised Error Distribution (GED), 

given that the distribution is not normal series. The results are presented below. 

 
Table 5. ARCH equation 

Dependent Variable: DAILY_RETURN_PORTOFOLIO  

Method: ML - ARCH (Marquardt) - Generalized error distribution (GED) 

Sample: 1 968    

Included observations: 968   

Convergence achieved after 7 iterations  

Presample variance: backcast (parameter = 0.7) 

ARCH = C(1) + C(2)*RESID(-1)^2  

     
     Variable Coefficient Std. Error z-Statistic Prob.   

     
      Variance Equation   

     
     C 0.000236 2.13E-05 11.08085 0.0000 

RESID(-1)^2 0.531057 0.101489 5.232653 0.0000 

     
     GED PARAMETER 1.090728 0.062854 17.35325 0.0000 

     
     R-squared -0.002202     Mean dependent var 0.000989 
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Adjusted R-squared -0.001167     S.D. dependent var 0.021088 

S.E. of regression 0.021100     Akaike info criterion -5.177622 

Sum squared resid 0.430982     Schwarz criterion -5.162512 

Log likelihood 2508.969     Hannan-Quinn criter. -5.171870 

Durbin-Watson stat 1.863669    

     
     

Source: author calculations 

 

To conclude if the above model is appropriate, I apply the Correlogram of Standardized Residuals. 

 
Table 6. Correlogram of Standardized Residuals 

Sample: 1 968      

Included observations: 968     

       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       
               |      |         |      | 1 -0.033 -0.033 1.0647 0.302 

        |*     |         |*     | 2 0.134 0.133 18.432 0.000 

        |      |         |*     | 3 0.066 0.075 22.610 0.000 

        |      |         |      | 4 0.039 0.027 24.094 0.000 

        |*     |         |*     | 5 0.139 0.126 43.049 0.000 

        |      |         |      | 6 0.046 0.045 45.128 0.000 

        |      |         |      | 7 0.072 0.040 50.213 0.000 

        |*     |         |*     | 8 0.138 0.120 68.779 0.000 

        |      |         |      | 9 0.006 -0.008 68.819 0.000 

        |*     |         |*     | 10 0.149 0.099 90.444 0.000 

        |      |         |      | 11 0.040 0.028 92.009 0.000 

        |      |         |      | 12 0.069 0.024 96.630 0.000 

        |      |         |      | 13 0.065 0.019 100.75 0.000 

        |      |         |      | 14 0.071 0.049 105.74 0.000 

        |      |         |      | 15 0.060 0.012 109.26 0.000 

       
       

Source: author calculations 

 

It is noted that all partial and total correlation coefficients exceed the limits, which indicates that 

there is correlation between residuals. Also, from the ARCH volatility chart, I see that volatility is not 

constant. 

 

 
Figure 4. ARCH Graph 

Source: author calculations 

 

For GARCH (1,1) I have the following equation: 
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Table 7. GARCH equation 

Dependent Variable: DAILY_RETURN_PORTOFOLIO  

Method: ML - ARCH (Marquardt) - Generalized error distribution (GED) 

Sample: 1 968    

Included observations: 968   

Convergence achieved after 13 iterations  

Presample variance: backcast (parameter = 0.7) 

GARCH = C(1) + C(2)*RESID(-1)^2 + C(3)*GARCH(-1) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   

     
      Variance Equation   

     
     C 2.91E-06 1.48E-06 1.971756 0.0486 

RESID(-1)^2 0.099492 0.017018 5.846384 0.0000 

GARCH(-1) 0.895441 0.016147 55.45594 0.0000 

     
     GED PARAMETER 1.362369 0.079337 17.17201 0.0000 

     
     R-squared -0.002202     Mean dependent var 0.000989 

Adjusted R-squared -0.001167     S.D. dependent var 0.021088 

S.E. of regression 0.021100     Akaike info criterion -5.318961 

Sum squared resid 0.430982     Schwarz criterion -5.298816 

Log likelihood 2578.377     Hannan-Quinn criter. -5.311293 

Durbin-Watson stat 1.863669    

     
     Source: author calculations 

 

Following the results, I can highlight the following aspects: 

- Coefficient of volatility C(1) is positive, indicating that when volatility increases, portfolio returns 

tend to increase; 

- Coefficient C(2) that estimates ARCH effects in the data series analyzed, recorded a statistically 

significant amount. In other words, on the Romanian capital market, the periods characterized of high 

volatility continues throughout with high volatility, and vice versa. 

- Coefficient C(3) which measures the asymmetry of the data series recorded a positive value, which 

suggests that negative shocks (bad news) generated less volatility than positive shocks (good news) on the 

Romanian capital market. 

 

To validate this equation I apply the Correlogram of Standardized Residuals. 

 
Table 8. Correlogram of Standardized Residuals 

Sample: 1 968      

Included observations: 968     

       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       
               |*     |         |*     | 1 0.091 0.091 7.9941 0.005 

        |      |         |      | 2 0.029 0.020 8.7861 0.012 

        |      |         |      | 3 -0.006 -0.011 8.8230 0.032 

        |      |         |      | 4 0.023 0.024 9.3433 0.053 

        |      |         |      | 5 -0.007 -0.011 9.3967 0.094 

       *|      |        *|      | 6 -0.070 -0.070 14.128 0.058 

        |      |         |      | 7 -0.019 -0.006 14.472 0.063 

        |      |         |      | 8 0.017 0.022 14.761 0.064 

        |      |         |      | 9 -0.051 -0.056 17.343 0.054 

        |      |         |      | 10 0.028 0.040 18.117 0.053 

        |      |         |      | 11 0.028 0.025 18.863 0.064 

        |      |         |      | 12 -0.044 -0.060 20.801 0.053 

        |      |         |      | 13 -0.034 -0.025 21.953 0.056 
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        |      |         |      | 14 0.023 0.034 22.496 0.069 

        |      |         |      | 15 -0.018 -0.033 22.833 0.088 

       
       

 

It is noted that partial and total correlation coefficients exceed the limits only for lag 1-3 and I can 

conclude that this model is quite suitable. The GARCH chart is the following: 

 

 
Figure 5. GARCH Graph 

Source: author calculations 

 

In the following, I'll estimate the VaR by the three models: EWMA, ARCH and GARCH. 

 

 Exponentially Weighted Moving Average: 

 

The VaR is calculated as follows: 

𝑉𝑎𝑅𝑡 = 𝑍𝑝𝜎𝑡 

where  𝑍𝑝is the standard normal quantile\ for 𝑝 = 0.01; 0.05; 

The conditional volatility is estimated based on the following method (suggested by RiskMetrics) : 

𝜎𝑡
2 = 0.94𝜎𝑡−1

2 + (1 − 0.94)𝜀𝑡−1
2  

where 𝜎𝑡
2 -  variance of the dependent variable in the current period; 

𝜀𝑡−1 - residuals from the previous period;  

 

 ARCH: 

 

The VaR is calculated as follows: 

𝑉𝑎𝑅𝑡 = 𝑍𝑝𝜎𝑡 

where 𝑍𝑝is the standard normal quantile\ for 𝑝 = 0.01; 0.05; 

The conditional volatility is estimated based on the ARCH model: 
2
t =0.000236 + 0.531056

2

1t  

where: 
2

t
-  variance of the dependent variable in the current period; 

1t – residuals from the previous period;  

 

 GARCH: 

 

The VaR is calculated as follows: 

𝑉𝑎𝑅𝑡 = 𝑍𝑝𝜎𝑡 
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where 𝑍𝑝is the standard normal quantile\ for 𝑝 = 0.01; 0.05; 
2
t =0.00000291 + 0.99492 

2

1t + 0.895441
2

1t  

where: 
2

t
-  variance of the dependent variable in the current period; 

1t – residuals from the previous period; 

2

1t  - variance of the dependent variable in the previous period; 

 

To find the best model for risk forecasting, I’ll use the violation ratio of Danielsson (2011, p.145). 

For this reason I’ll use an out-of-sample VaR estimates to identify the most appropriate risk forecasting 

model. This out-of-sample includes data from the last year (January, 02 2013 – November, 30 2013). If the 

actual loss exceeds the VaR forecast, then the VaR is considered to have been violated. The violation ratio is 

the sum of actual exceedences divided by the expected number of exceedences given the forecasted period. 

The confidence level is consider 95% and 99% and VaR is estimated daily. 

𝑉𝑅 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠
=  

𝐸

𝑝 𝑥 𝑁
 

where - E is the observed number of actual exceedences 

- p is the VaR probability level, in this case p=0.05 or 0.01 

- N is the number of observations used to forecast VaR values, in this case 250 observations for year 

2013. 

 

Applying this methodology, I’ve obtained the following situation: 

 
Table 9. Violation Ratio 

 
EWMA ARCH GARCH 

 
95% 99% 95% 99% 95% 99% 

              

Violation Ratio 0.72 0.8 0 0 0 0 

              

Source: author calculations 

 

Graphically, the situation is as follows: 

 

 
Figure 6. VaR estimates obtained from EWMA Model 

Source: author calculations 
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Figure 7. VaR estimates obtained from ARCH Model 

Source: author calculations 

 

 
Figure 8. VaR estimates obtained from GARCH Model 

Source: author calculations 

 

Given the above results, I conclude that the ARCH and GARCH models are more appropriate for 

estimating VaR than EWMA model. Also, from the above graphs, it can be observed that the GARCH model 

implies a lower cost of risk and for this reason this model is the most appropriate volatility forecasting model 

to estimate the Value-at-Risk. 
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5. Conclusions 

 

This study was conducted to analyse the market risk (estimated by Value-at-Risk) on the Romanian 

capital market using modern econometric tools to estimate volatility, such as EWMA, GARCH models. I’ve 

worked with a period of 4 years, considering three representative indices of Romanian capital market. 

Heteroskedasticity models have proved extremely useful in modeling volatility. After repeated attempts, the 

best model was found to be GARCH model (1.1). Analyzing the results obtained through GARCH equation, 

I can draw the following conclusions: 

- Coefficient of volatility is positive, indicating that when volatility increases, portfolio returns tend 

to increase; 

- Coefficient that estimates ARCH effects in the data series analyzed, recorded a statistically 

significant amount. In other words, on the Romanian capital market, the periods characterized of high 

volatility continues throughout with high volatility, and vice versa. 

- Coefficient which measures the asymmetry of the data series recorded a positive value, which 

suggests that negative shocks (bad news) generated less volatility than positive shocks (good news) on the 

Romanian capital market. 

VaR depends on the volatility, time horizon and confidence interval for the continuous returns under 

analysis. Volatility tends to happen in clusters. The assumption that volatility remains constant at all times 

can be fatal. It is  determined that the most recent data have asserted more influence on future volatility than 

past data. To emphasize this fact, recently, EWMA and GARCH models have become critical tools in 

financial applications.  

Applying the test of „violation ratio” I’ve found that Value-at-Risk estimated by GARCH model was 

the most appropriate to estimate the risk of a portfolio of the 3 indices on the Romanian capital market. So, 

GARCH provides more accurate analysis than EWMA.This approach is useful for traders and risk managers 

to be able to forecast the future volatility on a certain market. 
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