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The study extends the theoretical framework proposed to decompose rating migration 

matrices from bond market price data. Method to decompose default probability term 

structures for and from interest rate term structures for different rating categories, is 

delineated and empirically evaluated. Emphasis is squarely on using ahistorical 

(non-historical) market data, and utilizing actual market perceptions regarding 

default probabilities. The method naturally allows a mapping and transitioning 

between interest rate term structures and default probability term structures. 

Mapping to and fro interest rate term structures and default probability term 

structures introduces an additional level of triangulation and evaluation. The study 

examines the corresponding interest rate term structures of the default probability 

term structures of a typical rating migration matrix, and the corresponding default 

probability term structures of a typical market interest rate term structure set. It is 

found that the default probability term structures decomposed from market interest 

rate term structures significantly differ from rating migration matrix based default 

probability term structures. This may point to differing views on default probability 

term structures.  
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1. Introduction 

 

1.1. The Factors Impacting Bond Valuation 

The extent by which credit risk explain bond premiums is a predominant topic in bond valuation 

research. A number of authors conclude that it only accounts for a small fraction of bond premiums (Huang 

and Huang, 2012; Geske and Delianedis, 2001; Elton et al, 2001). 

The predominant factors affecting bond prices are listed as risk free rates, taxes, jumps, liquidity, 

market risk factors, issue traits, equity volatility, market risk, systematic risk, and macroeconomic risk factors 

                                                 
* Corresponding Author: 

Brian Barnard, Wits Business School, University of the Witwatersrand (WITS), South Africa 

 
Article History: 

Received 26 November 2018 | Accepted 26 December 2018 | Available Online 31 December 2018 

 
Cite Reference: 

Barnard, B., 2018. Rating Migration and Bond Valuation: A Historical Interest Rate and Default Probability Term Structures. Expert Journal of 

Finance, 6, pp.16-39. 

 

This paper has previously been included in an open access repository – SSRN. 



Barnard, B., 2018. Rating Migration and Bond Valuation: A Historical Interest Rate and Default Probability Term Structures.  

Expert Journal of Finance, 6, pp.16-39. 

17 

(Houweling et al, 2005; Geske and Delianedis, 2001; Elton et al, 2004; Elton et al, 2001; Grandes and Peter, 

2005; Delianedis and Geske, 2003; Campbell and Taksler, 2003; Collin‐Dufresne et al. 2001; Athanassakos 

and Carayannopoulos, 2001; Fama and French, 1993; Merton, 1974). 

A number of studies also look at credit rating migration risk, or simply credit migration risk. Das and 

Tufano (1995) state investors are exposed to three risks: interest rate risk, changes in credit risk caused by 

changes in the credit rating of the issuer of the debt, and changes in credit risk caused by changes in spreads 

on the debt, even when ratings have not changed. Altman (1996) examines the expected spread change and 

cost implication due to credit rating migration. In the context of portfolios, Fei et al. (2012) note that risk 

models generally predict for each asset in the portfolio, the corresponding probability of default (PD), exposure 

at default (EAD) and loss given default (LGD). Similarly, Kadam and Lenk (2008) note different estimates for 

risk capital, derived from loss distributions, which they quantify as Value-at-Risk (VAR) and Expected Loss 

(EL) for the portfolio at hand. Jarrow et al. (1997) models the impact in forward rates – and thus bond value – 

due to credit rating jumps. 

Delianedis and Geske (2003) note that default probabilities and changes in expected default 

frequencies are important to both the structure and pricing of credit derivatives. All corporate issuers have 

some positive probability of default. This default probability should change continuously with changes in the 

firm’s stock price and thus its leverage. The value of most fixed income securities is typically inversely related 

to the probability of default. Investors are concerned about changes in the value of their fixed income securities 

due to changes in the probability of default, even though the actual default seldom occurs. In fact, fixed income 

investors may be more concerned with changes in the perceived credit quality of their bond holdings than with 

actual default. Rating migrations, which offer one reflection of changes in perceived quality of bonds, occur 

much more frequently than defaults. 

Foss (1995) specifically differentiates between credit risk and default risk. He notes that the terms 

default risk and credit risk are often used interchangeably; however, they are not one and the same. Default 

risk is defined as the risk that the issuer of a fixed-income security will be unable to make timely payments of 

interest or principal. This risk, diversified over a portfolio of equally rated securities, leads to an expected 

default loss. Many of the initial studies on risks and returns focus on historical default rates and losses. 

Although these studies provide valuable insight, default rates and default losses, in isolation, are not 

paramount. Credit risk is defined as the risk that the perceived credit quality of an issuer will change, although 

default is not necessarily a certain event. Increased credit risk is reflected in a widening of the yield spread. 

Credit and default risk are correlated because credit deterioration is almost always a precursor to eventual 

default; even in the most drastic cases, however, until default actually occurs, the potential for recovery or 

stabilization cannot be totally discounted. In line with this, Manzoni (2004) makes the point that, while several 

studies model default and bankruptcy events, no empirical work directly models the probability of a bond 

having its rating revised. He points out the traditional default mode of thinking of most financial institutions, 

leading to  a consensus view of transitions as non-fundamental economic events. 

 

1.2. Credit Default Swaps and Bond Valuation 

Norden and Weber (2009) argue that CDS should reflect pure issuer default risk, and no facility or 

issue specific risk, making these instruments a potentially ideal benchmark for measuring and pricing credit 

risk. According to Blanco et al. (2005), CDSs are an upper bound on the price of credit risk (while credit 

spreads form a lower bound). Benkert (2004) argues that CDS premia represent primarily a price of default 

risk, and are in this respect similar to bond spreads. Consequently, CDS premia and bond spreads should be 

driven by the same factors. A number of studies (Benkert, 2004; Ericsson et al, 2009) indeed consider the same 

factors of bond valuation to explain CDS premiums. Weistroffer et al. (2009) mention that rating agencies use 

information derived from CDS prices to calculate market implied ratings. 

 
1.3. Default Probability 

Zhu (2006) states that, in general, measures of credit risk consist of three building blocks: probability 

of default (PD), loss given default (LGD) and correlation between PD and LGD. In order to model default risk, 

Athanassakos and Carayannopoulos (2001), consider three proxy variables: i) credit rating, which captures the 

effect of both the probability of default and the recovery rate; ii) time to maturity; iii) the existence of a sinking 

fund. Both of the latter two proxies should be related to the probability of default. 

Grandes and Peter (2005) note that, when government bonds are not truly risk-free, particularly in an 

emerging market, the corporate yield spread above an equivalent government bond yield does not reflect 

corporate default risk, even after controlling for all other factors. It merely reflects corporate default risk in 

excess of sovereign default risk. They model corporate default probability as the probability that the firm 
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defaults given that the sovereign does not default, plus the probability that the firm defaults given that the 

sovereign has defaulted. 

Campbell and Taksler (2003) note that the literature distinguishes between structural and reduced form 

models. In structural models, a firm is assumed to default when the value of its liabilities exceeds the value of 

its assets, in which case bondholders assume control of the company in exchange for its residual value. 

Reduced form models, by contrast, assume exogenous stochastic processes for the default probability and the 

recovery rate. The added flexibility of the reduced-form approach allows default risk to play a somewhat 

greater role in the pricing of corporate bonds. 

Merton (1974) shows that for a given maturity, the risk of default varies directly with the variance of 

the returns on the firm value. In this context, the business cycle and economic environment impact both the 

level of the risk free rate and the variance of returns on the firm value. 

Huang and Huang (2012) consider a credit risk model with a counter-cyclical market risk premium to 

capture the effects of business cycles on credit risk premia. Secondly, they introduce an analytically tractable 

jump-diffusion structural credit risk model to capture the effects on credit risk premia of certain future states 

with both high default risks and abnormally high stochastic discount factors. The second mechanism is 

distinctly different from the first mechanism. In the model with jumps in asset values, the jumps are 

unpredictable and there is no time variation in market risk premia. 

In line with reduced form models, Elton et al. (2001) develop marginal default probabilities from a 

rating transition matrix employing the assumption that the rating transition process is stationary and 

Markovian. In year one, the marginal probability of default can be determined directly from the transition 

matrix and default vector, and is, for each rating class, the proportion of defaults in year one. To obtain 

subsequent year defaults, they first use the transition matrix to calculate the ratings going into a given year for 

any bond starting with a particular rating in the previous year. The defaults of that year are then the proportion 

in each rating class multiplied by the probability that a bond in that class defaults by year end. They find that 

the marginal probability of default increases for the high-rated debt and decreases for the low-rated debt. This 

occurs because bonds change rating classes over time. 

A number of studies use bond valuation models – both structural and reduced form – to note the extent 

by which market prices can be modelled, and to note the magnitude of default probability as bond valuation 

factor (Eom et al, 2004; Elton et al, 2001; Huang and Huang, 2012; Geske and Delianedis, 2001; Collin‐

Dufresne et al, 2001). 

Fei et al. (2012) note a credit rating is a financial indicator of an obligor’s level of creditworthiness. 

Given the relationship between credit ratings and default probability or credit quality, Kumar and Haynes 

(2003) discuss rating methodology and list the key factors considered as: i) business analysis (industry risk; 

market position; operating efficiency; legal position), ii) financial analysis (accounting quality; earnings 

protection; adequacy of cash flows; financial flexibility; interest and tax sensitivity), and iii) management 

evaluation (track record of management; evaluation of capacity to overcome adverse situations; goals, 

philosophy and strategies). They find that financial parameters reflect, to a significant extent, the subjective 

and objective factors used by an expert while rating a debt obligation, with hidden relationships between the 

financial parameters and associated expert rating. 

A number of authors examine the timeliness, accuracy and actual information content of credit rating 

agencies' ratings (Hines et al, 1975; Ederington and Goh, 1998; Amato and Furfine, 2004). Amato and Furfine 

(2004) mention that rating agencies insist that their ratings should be interpreted as ordinal rankings of default 

risk that are valid at all points in time, rather than absolute measures of default probability that are constant 

through time. Delianedis and Geske (2003) note that rating agencies regularly measure the historical default 

frequency of corporate issuers. While these historical default frequencies are interesting, they are not forward-

looking. Option models can provide a forward-looking, risk neutral default probability. Chan and Jegadeesh 

(2004) point to evidence that agency ratings may not be accurate in a timely fashion. 

Studies like Wang (2004) attempt to model default ratings, and studies like Hines et al. (1975), Kaplan 

and Urwitz (1979), Belkaoui (1980) and Chan and Jegadeesh (2004) statistically model bond ratings.  This 

may provide alternative default probability estimates, as structural models also do, relative to the credit ratings 

of credit rating agencies, but must still be translated to default probability term structures, in a similar way 

credit agencies' ratings are translated. 

Also, a number of studies quantify credit ratings as proxies of credit quality in terms of spread (Foss, 

1995; Kaplan and Urwitz, 1979; Cantor et al, 1997; Perraudin and Taylor, 2004; Chan and Jegadeesh, 2004). 

 

1.4. Default Probability Term Structures 

Altman (1989) notes that analysts have concentrated their efforts on measuring the default rate for 
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finite periods of time – for example, one year – and then averaging the annual rates for longer periods. 

Elton (1999) argues that realized returns are a very poor measure of expected returns and that 

information surprises highly influence a number of factors in an asset pricing model. He believes that 

developing better measures of expected return and alternative ways of testing asset pricing theories that do not 

require using realized returns have a much higher payoff than any additional development of statistical tests 

that continue to rely on realized returns as a proxy for expected returns. He argues that either there are 

information surprises that are so large or that a sequence of these surprises is correlated so that the cumulative 

effect is so large that they have a significant permanent effect on the realized mean. Furthermore, these 

surprises can dominate the estimate of mean returns and be sufficiently large that they are still a dominant 

influence as the observation interval increases. Thus, the difference between expected and realized returns is 

viewed as a mixture of two distributions, one with standard properties and the other that more closely resembles 

a jump process. 

Duffie and Singleton (1999) state that, because of the possibility of sudden changes in perceptions of 

credit quality, particularly among low-quality issues such as Brady bonds, one may wish to allow for surprise 

jumps in default probability. 

Nelson and Siegel (1987) state the range of shapes generally associated with interest rate term 

structures: monotonic, humped, and S shaped. Related to this, a number of studies consider the relationship or 

correlation between default probability, interest rates, and the state of the economy (Benkert, 2004; Duffie and 

Singleton, 1999; Das and Tufano, 1995; Huang and Huang, 2012; Athanassakos and Carayannopoulos, 2001; 

Amato and Furfine, 2004; Delianedis and Geske, 2003; Longstaff and Schwartz, 1995; Kim et al. 1993; 

Campbell and Taksler, 2003; Lando and Skødeberg, 2002; Hamilton and Cantor, 2004). 

Benkert (2004) argue that corporate defaults occur more often during economic downturns than during 

boom phases, and the occurrence of a recession may cause a decline in credit quality that leads to more defaults 

in the future. According to this line of reasoning, the compensation for default risk would rise. Duffie and 

Singleton (1999) note strong evidence that hazard rates for default of corporate bonds vary with the business 

cycle. Equally, recovery data also exhibit a pronounced cyclical component. Das and Tufano (1995) allowed 

recovery to vary over time so as to induce a non-zero correlation between credit spreads and the riskless term 

structure. However, for computational tractability they maintained the assumption of independence of the 

hazard rate (default rate) and risk-free rate. 

Huang and Huang (2012) argue that a credit risk premium is required by investors because the 

uncertainty of default loss should be systematic – bondholders are more likely to suffer default losses in bad 

states of the economy. Moreover, precisely because of the tendency for default events to cluster in the worst 

states of the economy, the credit risk premium can be potentially very large. Athanassakos and 

Carayannopoulos (2001) note that yield spreads are greater during recessions than during recoveries, and also 

point to the link between the behaviour of yield spreads to the shape of the term structure, as a proxy of the 

business cycle. They confirm the typical direct relationship between default risk and yield spreads, and show 

that the impact of the business cycle (macro-economy) on the yield spread of a corporate bond depends on the 

industry sector to which the issuer of the bond belongs. The inflation rate should be directly related to yield 

spreads, since during inflationary periods investors may require higher risk premia from their investments in 

corporate bonds. 

Athanassakos and Carayannopoulos (2001) use the change in the shape of the term structure of interest 

rates – represented by the quarterly change in the difference between the 20-year treasury rates and the three 

month t-bill rates – as a proxy for the business cycle, since much research in the past has linked the shape of 

the treasury term structure to future variations in the business cycle. A steepening term structure is a typical 

result of robust economic growth and lower short term interest rates and reflects a general belief in a more 

robust economic future. The opposite is true when the term structure is flattening or turns negatively sloped. 

Therefore, the particular proxy should be negatively related to yield spreads. Finally, the annual rate of change 

in the industrial production index should be negatively related to yield spreads since increased economic 

activity will bolster investors’ confidence in the corporate sector, and lead to a reduction in the risk premia 

demanded for investment in corporate bonds. 

Amato and Furfine (2004) argue that financial market participants behave as if risk is countercyclical, 

e.g. at its highest during economic downturns. Empirical models, too, tend to indicate a rise in risk during 

recessions. There is a relationship between the correlation of default rates and loss in the event of default and 

the business cycle. Models that assume independence of default probabilities and loss given default will tend 

to underestimate the probability of severe losses during economic downturns. They delineate the empirical 

significance of the procyclicality of credit quality changes by showing that estimated credit losses are much 

higher in a contraction relative to an expansion. 
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Longstaff and Schwartz (1995) argue that the corporate yield spread should vary inversely with the 

benchmark treasury yield, and find evidence to support this. Kim et al. (1993) show that default risk is not 

particularly sensitive to the volatility of interest rates but is sensitive to interest rate expectations. Campbell 

and Taksler (2003) note idiosyncratic volatility can move very differently from market-wide volatility. 

Movements in idiosyncratic risk are more persistent than movements in market risk. Lando and Skødeberg 

(2002) note that it is likely that macroeconomic variables or other indicators of the business cycle influence 

rating intensities. 

A number of studies model default probability term structures as instantaneous stochastic processes 

(Das and Tufano, 1995; Duffee, 1999; Jarrow et al, 2002) . For example, Duffee (1999) uses the extended 

Kalman filter to fit yields on bonds issued by individual investment-grade firms to a model of instantaneous 

default risk. Das and Tufano (1995) and Jarrow et al. (1997) model default risk as Markov chains or trees. 

Jarrow and Turnbull (1995) exogenously specify a stochastic process for the evolution of the default-free term 

structure and the term structure for risky debt. 

Duffee (1999) argues that at each instant there is some probability that a firm defaults on its 

obligations. Both this probability and the recovery rate in the event of default may vary stochastically through 

time. The stochastic processes determine the price of credit risk. Although these processes are not formally 

linked to the firm's asset value, there is presumably some underlying relation. The instantaneous probability 

that a given firm defaults on its obligated bond payments follows a translated single-factor square-root 

diffusion process, with a modification that allows the default process to be correlated with the factors driving 

the default-free term structure. Realistically there are a number of factors other than default risk that drive a 

wedge between corporate and Treasury bond prices, such as liquidity differences, state taxes, and special repo 

rates. Here, all of these factors are substituted into a stochastic process called a default risk process. Default 

risk is negatively correlated with default-free interest rates. In addition, for the typical firm, the instantaneous 

risk of default has a lower bound that exceeds zero. In other words, even if a firm's financial health dramatically 

improves, the model implies that yield spreads on the firm's bonds remain positive. 

Duffee (1999) first models the price of a risk-free bond as given by the expectation, under the 

equivalent martingale measure, of the cumulative discount rate between t and T. The discount rate follows a 

stochastic process – the sum of a constant, and two factors that follow independent square-root stochastic 

processes. He then models the adjusted discount rate for bond issues that can default, relative to risk-free 

bonds. This setup is designed to capture three important empirical features of corporate bond yield spreads. 

The most obvious is that the spreads are stochastic, fluctuating with the financial health of the firm. The second 

feature is that yield spreads for very high-quality firms are positive, even at the short end of the yield curve. 

This fact suggests that regardless of how healthy a firm may seem, there is some level below which yield 

spreads cannot fall. The third feature is that yield spreads, especially spreads for lower quality bonds, appear 

to be systematically related to variations in the default-free term structure. 

Houweling and Vorst (2005) note reduced form models that use time series estimation to model the 

hazard rate stochastically, typically as a Vasicek or CIR process. Also, other reduced form models use cross-

sectional estimation and consider either constant or stochastic hazard rates, where the stochastic process is 

chosen in such a way that the survival probability curve is known analytically. Houweling and Vorst (2005) 

follow an intermediate approach by using a deterministic function of time to maturity. This specification 

facilitates parameter estimation, while still allowing for time-dependency. They model the integrated hazard 

function as a polynomial function of time to maturity, with three degrees – linear, quadratic and cubic. 

Das and Tufano (1995) choose to make recovery rates correlated with the term structure of interest 

rates. This results in a model wherein credit spreads are correlated with interest rates, as is evidenced in 

practice. In the Jarrow-Lando-Turnbull model credit spreads change only when credit ratings change, whereas 

in the debt markets it is found that credit spreads change even when ratings have not changed. Injecting 

stochastic recovery rates into the model provides this extra feature. 

In the context of default probability term structures, credit migration and credit migration matrices 

should also be mentioned. 

A number of studies examine the stochastic processes associated with rating transitions (Frydman and 

Schuermann, 2008; Lando and Skødeberg, 2002; Hamilton and Cantor, 2004; Altman, 1996). Altman and 

Rijken (2004) investigate the through-the-cycle methodology that agencies use, in the context of bond 

valuation, and rating timeliness and rating stability. 

Nickell et al. (2000) use Moody’s data from 1970 to 1997 to examine the dependence of ratings 

transition probabilities on industry, country and stage of the business cycle using an ordered probit approach, 

and they find that the business cycle dimension is the most important in explaining variation of these transition 

probabilities. They point out that rating transition matrices vary according to the stage of the business cycle, 



Barnard, B., 2018. Rating Migration and Bond Valuation: A Historical Interest Rate and Default Probability Term Structures.  

Expert Journal of Finance, 6, pp.16-39. 

21 

the industry of the obligor and the length of time that has elapsed since the issuance of the bond. Kadam and 

Lenk (2008) identified strong differences in rating migration behaviour between issuers of different industry 

sectors and countries. 

Bangia et al. (2002) argue that credit migration matrices provide the specific linkage between 

underlying macroeconomic conditions and asset quality. Credit migration matrices characterize the expected 

changes in credit quality of obligors. Total volatility (risk) is composed of a systematic and an idiosyncratic 

component. Because ratings are a reflection of a firm’s asset quality and distance to default, a reasonable 

definition of “systematic” is the state of the economy. They find distinct differences between the U.S. 

expansion and contraction transition matrices. The most striking difference between expansion and contraction 

matrices are the downgrading and especially the default probabilities that increase significantly in contractions. 

Overall, these results reveal that migration probabilities are more stable in contractions than they are on 

average, supporting the existence of two distinct economic regimes. The rating universe should develop 

differently in contraction periods compared to expansion times. 

The straightforward application of these matrices however would normally be restricted to situations 

where the future state of the economy over the transition horizon under consideration is assumed to be known. 

The state of the economy clearly is one of the major drivers of systematic credit risk, especially as lower credit 

classes are much more sensitive to macro-economic factors. Consequently it should be integrated into credit 

risk modeling whenever possible, otherwise the downward potential of high-yield portfolios in contractions 

might be severely underestimated. Modern credit risk models account for different industries only through 

different term structures, but not through industry dependent transition matrices. 

Fei et al. (2012) proposes an approach to estimate credit rating migration risk that controls for the 

business-cycle evolution during the relevant time horizon in order to ensure adequate capital buffers both in 

good and bad times. The approach allows the default risk associated with a given credit rating to change as the 

economy moves through different points in the business cycle. They mention a body of research linking 

portfolio credit risk with macroeconomic factors showing, for instance, that default risk tends to increase 

during economic downturns. Their premise is that point-in-time methodologies that account for business cycles 

should provide more realistic credit risk measures than through-the-cycle models that smooth out transitory 

fluctuations (perceived as random noise) in economic fundamentals. 

 

1.5. Decomposing Default Probabilities from Market Data 

1.5.1. Decomposing Rating Migration Matrices from Market Data 

Taken from Barnard (2017), equation 1 states the reduced form model of Duffie and Singleton (1999), 

adapted for coupon paying bonds. Equation 1 has two components, a coupon paying component associated 

with non-default outcomes, and a recovery component associated with default outcomes. 

In the equation, 𝑉is the price or value of the risk-bearing bond; 𝑀is the number of coupons of the 

bond, including par; 𝐶𝑚is the coupon of the bond on coupon date 𝑚; 𝑅is the recovery of par value; 𝑟𝑡𝑚
𝑟𝑓

and 

𝑡𝑚are the risk-free spot rate and time value, respectively, associated with coupon date 𝑚; ℎ𝑛is the default 

probability of interval 𝑛, conditional on no default prior to interval 𝑛; 𝑃𝑚is the cumulative non-default 

probability of interval 𝑚; 𝐽𝑚is the number of probability intervals for which the possibility of default is 

considered up to coupon date 𝑚; 𝐽𝑀is the number of probability intervals considered up to maturity. 

For coupon paying bonds, it is convenient to consider 𝐽𝑚and 𝐽𝑀to be equal to 𝑚and 𝑀. For example, 

the third coupon may have three probability intervals leading up to it. For zero-coupon bonds, 𝑀is equal to 1, 

and 𝐽𝑀may be greater than 𝑀, with 𝐽𝑚not necessarily corresponding with 𝑚; a regular coupon interval may 

still be considered though to ensure a timely and consistent consideration of default. A five-year zero coupon 

bond will have only one coupon, but can have up to ten probability intervals leading up to it, if semi-annual 

probability intervals are used. 

𝑉 = ∑(∏(1 − ℎ𝑛)

𝐽𝑚

𝑛=1

𝑒−𝑟𝑡𝑚
𝑟𝑓
𝑡𝑚𝐶𝑚)

𝑀

𝑚=1

+∑(∏(1 − ℎ𝑛)

𝑗−1

𝑛=1

ℎ𝑗𝑒
−𝑟𝑡𝑗

𝑟𝑓
𝑡𝑗
𝑅)

𝐽𝑀

𝑗=1

 

[1.1] 

∏(1− ℎ𝑛)

𝑗−1

𝑛=1

= 1; 𝑗 − 1 < 1 

[1.1.1] 

𝑃𝑚 =∏(1 − ℎ𝑛)

𝐽𝑚

𝑛=1

 

[1.2] 
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𝑃𝑚∣𝑚−1 = ∏(1 − ℎ𝑛)

𝐽𝑚−1

𝑛=1

−∏(1 − ℎ𝑛)

𝐽𝑚

𝑛=1

= ∏(1 − ℎ𝑛)

𝐽𝑚−1

𝑛=1

(1 − (1 − ℎ𝐽𝑚)) = ∏(1 − ℎ𝑛)

𝐽𝑚−1

𝑛=1

ℎ𝐽𝑚  

[1.3] 

𝑉 = ∑ 𝑃𝑚𝑒
−𝑟𝑡𝑚

𝑟𝑓
𝑡𝑚𝐶𝑚

𝑀

𝑚=1

+∑𝑃𝑗∣𝑗−1𝑒
−𝑟𝑡𝑗

𝑟𝑓
𝑡𝑗
𝑅

𝐽𝑀

𝑗=1

 

[1.4] 

Although not explicitly stated by them, equation 2 delineates the default probability structure 

implemented by Elton et al. (2001). They subsequently substitute this into a reduced form model similar to 

equation 1. 

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡are all non-default rating categories; 𝐼𝑃𝑎𝑡ℎ𝑚is the intensity or propensity of path or tree 

𝑃𝑎𝑡ℎ𝑚that leads up to interval 𝑚; similarly, 𝐼𝑗
𝑃𝑎𝑡ℎis the path intensity or propensity of path 𝑗; 𝐼𝑚

𝑐𝑎𝑡𝑛is the 

intensity or propensity of rating category 𝑛in interval 𝑚; 𝑃𝑎𝑡ℎ𝑚
𝑑𝑒𝑓𝑎𝑢𝑙𝑡

is the number of default paths of (up to) 

interval 𝑚; 𝑃𝑎𝑡ℎ𝑚
𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

is the number of non-default paths of interval 𝑚; contrary to a default path, a non-

default path can not and does not end up in default over its length or run; 𝑃𝑎𝑡ℎ𝑚∣→𝑘
𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

is the number of 

non-default paths that migrate to – end with – category 𝑘in interval 𝑚; 𝑃𝑏(𝑛−1)→𝑏𝑛
𝑚𝑖𝑔∣𝑛

is the probability of migration 

from rating 𝑏𝑛−1in interval 𝑛 − 1to rating 𝑏𝑛in interval 𝑛; 𝑃𝑘→𝑛
𝑚𝑖𝑔∣𝑚

is the probability of migration from category 

𝑘to category 𝑛in interval 𝑚; 𝑃𝑘→𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔∣𝑚

is the probability of category 𝑘migrating to default status in interval 

𝑚; ℎ𝑛is again the default probability of interval 𝑛, conditional on no default prior to interval 𝑛. 

 

𝐼𝑃𝑎𝑡ℎ𝑚 =∏𝑃𝑏(𝑛−1)→𝑏𝑛
𝑚𝑖𝑔∣𝑛

𝐽𝑚

𝑛=1

 

[2.1] 

𝐼𝑚
𝑐𝑎𝑡𝑛 = ∑ ∑ 𝐼𝑗

𝑃𝑎𝑡ℎ

𝑃𝑎𝑡ℎ𝑚−1∣→𝑘
𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑗=1

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑘=1

𝑃𝑘→𝑛
𝑚𝑖𝑔∣𝑚

= ∑ 𝐼𝑚−1
𝑐𝑎𝑡𝑘𝑃𝑘→𝑛

𝑚𝑖𝑔∣𝑚

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑘=1

 

[2.2] 

∏(1− ℎ𝑛)

𝑚

𝑛=1

= ∑ 𝐼𝑛
𝑃𝑎𝑡ℎ

𝑃𝑎𝑡ℎ𝑚
𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑛=1

= ∑ 𝐼𝑚
𝑐𝑎𝑡𝑛

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑛=1

 

[2.3] 

∏(1− ℎ𝑛)

𝑚−1

𝑛=1

ℎ𝑚 = ∑ ∑ 𝐼𝑗
𝑃𝑎𝑡ℎ

𝑃𝑎𝑡ℎ𝑚−1∣→𝑘
𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑗=1

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑘=1

𝑃𝑘→𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔∣𝑚

= ∑ 𝐼𝑚−1
𝑐𝑎𝑡𝑘𝑃𝑘→𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑚𝑖𝑔∣𝑚

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑘=1

 

[2.4] 

ℎ𝑛 = 1 − (∏(1 − ℎ𝑚)

𝑛

𝑚=1

∏(1− ℎ𝑚)

𝑛−1

𝑚=1

⁄ ) = ( ∑ 𝐼𝑛−1
𝑐𝑎𝑡𝑘

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑘=1

𝑃𝑘→𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔∣𝑛

) (∏(1 − ℎ𝑚)

𝑛−1

𝑚=1

)⁄  

[2.5] 

 

Equation 3 allows the recovery rate to depend on the rating category the bond is in when it defaults. 

Moving from equation 1.4 to equation 3.1 is further explained by equation set 2. 𝑅𝑚
𝑛   is the recovery of par 

value of rating category 𝑛in interval 𝑚. 

 

𝑉 = ∑ 𝑃𝑚𝑒
−𝑟𝑡𝑚

𝑟𝑓
𝑡𝑚𝐶𝑚

𝑀

𝑚=1

+∑ ∑ 𝐼𝑗−1
𝑐𝑎𝑡𝑛𝑃𝑛→𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑚𝑖𝑔∣𝑗
𝑒
−𝑟𝑡𝑗

𝑟𝑓
𝑡𝑗
𝑅𝑗
𝑛

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑛=1

𝐽𝑀

𝑗=1

 

[3.1] 

Equation set 4 contains the optimization problem to extract the market rating migration matrix from 

market prices. Any proper rating migration matrix that satisfy the constraints could serve as initial solution. 

The probabilities of the migration matrix form the coefficients of the optimization problem and are adjusted 

and selected as part of the optimization. A number of constraints can be stipulated, varying in principality or 

importance: For each rating category, the sum of the probabilities of migrating from the particular category to 

any other non-default category, plus the probability of default of the category should equal 1 (equation 4.b). 
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For each rating category, any probability of migrating to any other non-default category, as well as the 

probability of default of that particular category should be greater than or equal to zero (equation 4.c). For each 

rating category with a rating category preceding it, the particular category's probability of default should be 

equal to or higher than that of the category preceding it (equation 4.d). For each rating category, the probability 

of migrating to rating category 𝑛is equal to or greater than the probability of migrating to rating category 𝑛 +
1or 𝑛 − 1(equation 4.e). 

𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡and 𝑉𝑛

𝑚𝑜𝑑𝑒𝑙are the market and modelled bond value of bond 𝑛; 𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡∣𝑘and 𝑉𝑛

𝑚𝑜𝑑𝑒𝑙∣𝑘are the 

market and modelled bond value of bond 𝑛with rating category 𝑘; 𝑁is the total number of bonds included in 

the sample; 𝑁𝑘is the total number of sample bonds of rating category 𝑘; 𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡refers to all the non-

default rating categories; 𝑃𝑚→𝑛
𝑚𝑖𝑔

is the probability of migrating from category 𝑚to 𝑛; 𝑃𝑐𝑎𝑡𝑚
𝑑𝑒𝑓𝑎𝑢𝑙𝑡

is the probability 

of default for category 𝑚. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑(𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡 − 𝑉𝑛

𝑚𝑜𝑑𝑒𝑙)2
𝑁

𝑛=1

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑(𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡∣𝑘 − 𝑉𝑛

𝑚𝑜𝑑𝑒𝑙∣𝑘)2

𝑁𝑘

𝑛=1

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑘=1

 

[4.a] 

Subject to:  

∑ 𝑃𝑚→𝑛
𝑚𝑖𝑔𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑛=1 + 𝑃𝑐𝑎𝑡𝑚
𝑑𝑒𝑓𝑎𝑢𝑙𝑡

= 1; 𝑚 ∈ {1, . . , 𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡} [4.b] 

∑ 𝑃𝑚→𝑛
𝑚𝑖𝑔

≥𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑛=1 0; 𝑃𝑐𝑎𝑡𝑚

𝑑𝑒𝑓𝑎𝑢𝑙𝑡
≥ 0; 𝑚 ∈ {1, . . , 𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡} [4.c] 

𝑃𝑐𝑎𝑡𝑚
𝑑𝑒𝑓𝑎𝑢𝑙𝑡

≥ 𝑃𝑐𝑎𝑡𝑚−1

𝑑𝑒𝑓𝑎𝑢𝑙𝑡
; 𝑚 ∈ {2, . . , 𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡} [4.d] 

𝑃𝑛→𝑛−𝑥
𝑚𝑖𝑔

≥ 𝑃𝑛→𝑛−𝑥−1
𝑚𝑖𝑔

 

𝑃𝑛→𝑛+𝑥
𝑚𝑖𝑔

≥ 𝑃𝑛→𝑛+𝑥+1
𝑚𝑖𝑔

 

𝑛 ∈ (1, . . . 𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡) 
𝑛 − 𝑥 ≤ 𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡; 𝑛 − 𝑥 − 1 ≥ 1 

𝑛 + 𝑥 + 1 ≤ 𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡; 𝑛 + 𝑥 ≥ 1 

[4.e] 

 

Equation 4.b forms an equality constraint – for any rating category, the sum of the probabilities of 

migrating from the particular category to any other non-default category, plus the probability of default of the 

category should at all times equal 1. A principal concern is the integrity of partial derivatives measured during 

optimization, in the wake of this equality constraint – given the way partial derivatives are measured during 

optimization, it may essentially imply non-conformance to or a relaxation of the equality constraint, and it may 

in turn imply the partial derivatives measured are distorted. If the equality constraint must be met not to distort 

the measurement of partial derivatives of the migration probability coefficients, it implies the basic assumption 

of coefficient independence does not hold. Thus, it becomes a question of whether it is permissible to assume 

coefficient independence during measurement of partial derivates as part of optimization. 

In light of this, it is suggested that, instead of modelling and optimizing migration probability 

coefficients directly, delta coefficients are rather used to model and optimize rating category migration 

probabilities. For this purpose, all rating migrations are sub-classified as primary or x-to-x migration, and 

secondary or x-to-y migration. Primary or x-to-x migration involves the particular rating category maintaining 

its rating; secondary or x-to-y migration involves the rating category migrating to a different rating category, 

including default. A particular delta coefficient then depicts the net movement or change between the primary 

or x-to-x migration and the corresponding secondary or x-to-y migration of the associated rating category. 

Therefore, only x-to-y migration probabilities are assigned delta coefficients. The intermediate or end value of 

any x-to-y migration probability equals its initial value – emanating from the initial solution – plus its delta 

coefficient (equation 5.a). x-to-x migration probabilities are not assigned delta coefficients directly, but obtain 

their intermediate and end values from the sum of the x-to-y migration delta coefficients (equation 5.b), that 

can also be seen as depicting net movement out of the primary migration probability coefficient. In other words, 

according to equation 5, a positive delta coefficient implies x-to-x migration increases, and the corresponding 

x-to-y migration decreases, and vice versa. This way, the mentioned equality constraint is met at all times, also 

when measuring partial derivatives. 

𝑃𝑚→𝑛
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

is the initial rating migration probability; 𝑃𝑚→𝑛
𝑚𝑖𝑔∣𝑒𝑛𝑑

is the end rating migration probability; 
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𝛥𝑃𝑚→𝑛
𝑚𝑖𝑔

is the rating migration delta between primary rating category 𝑚and secondary rating category 𝑛; 

𝑃𝑚→𝑛
𝑚𝑖𝑔

and 𝑃𝑚→𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔

depict x-to-y migration of rating category 𝑚; 𝑃𝑚→𝑚
𝑚𝑖𝑔

depict x-to-x migration of rating 

category m. 

 

𝑃𝑚→𝑛
𝑚𝑖𝑔∣𝑒𝑛𝑑

= 𝑃𝑚→𝑛
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

− 𝛥𝑃𝑚→𝑛
𝑚𝑖𝑔

; 𝑛 ≠ 𝑚; 𝑛 ≠ 𝑑𝑒𝑓𝑎𝑢𝑙𝑡; 𝑛 ∈ [𝑟𝑎𝑡𝑖𝑛𝑔𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠] 

𝑃𝑚→𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔∣𝑒𝑛𝑑

= 𝑃𝑚→𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

− 𝛥𝑃𝑚→𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔

 

𝑃𝑚→𝑛
𝑚𝑖𝑔∣𝑒𝑛𝑑

= 𝑃𝑚→𝑛
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

− 𝛥𝑃𝑚→𝑛
𝑚𝑖𝑔

; 𝑛 ≠ 𝑚; 𝑛 ∈ [𝑟𝑎𝑡𝑖𝑛𝑔𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠; 𝑑𝑒𝑓𝑎𝑢𝑙𝑡] 

[5.a] 

𝑃𝑚→𝑚
𝑚𝑖𝑔∣𝑒𝑛𝑑

= 𝑃𝑚→𝑚
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

+ ∑ 𝛥𝑃𝑚→𝑛
𝑚𝑖𝑔𝑛 ; 𝑛 ≠ 𝑚;𝑛 ∈ [𝑟𝑎𝑡𝑖𝑛𝑔𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠; 𝑑𝑒𝑓𝑎𝑢𝑙𝑡] [5.b] 

 

Equation 6 rewrites the original optimization problem in terms of delta coefficients. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑(𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡 − 𝑉𝑛

𝑚𝑜𝑑𝑒𝑙)2
𝑁

𝑛=1

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑(𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡∣𝑘 − 𝑉𝑛

𝑚𝑜𝑑𝑒𝑙∣𝑘)2

𝑁𝑘

𝑛=1

𝑐𝑎𝑡𝑛𝑜𝑛−𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑘=1

 

[6.a] 

 

Subject to: 

 

𝑃𝑚→𝑚
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

+∑𝑃𝑚→𝑛
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

𝑛

= 1 
𝑛 ≠ 𝑚;𝑛 ∈ [𝑟𝑎𝑡𝑖𝑛𝑔𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠; 𝑑𝑒𝑓𝑎𝑢𝑙𝑡] [6.b] 

𝑃𝑚→𝑛
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

− 𝛥𝑃𝑚→𝑛
𝑚𝑖𝑔

≥ 0; 𝑃𝑚→𝑛
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

− 𝛥𝑃𝑚→𝑛
𝑚𝑖𝑔

≤ 1 [6.c] 

𝑃𝑚→𝑚
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

+ ∑ 𝛥𝑃𝑚→𝑛
𝑚𝑖𝑔𝑛 ≥ 0; 

𝑃𝑚→𝑚
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

+∑𝛥𝑃𝑚→𝑛
𝑚𝑖𝑔

𝑛

≤ 1 
[6.d] 

𝑃𝑚→𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

− 𝛥𝑃𝑚→𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔

≥ 𝑃(𝑚−1)→𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

− 𝛥𝑃(𝑚−1)→𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑚𝑖𝑔

 [6.e] 

𝑃𝑚→𝑛
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

− 𝛥𝑃𝑚→𝑛
𝑚𝑖𝑔

≥ 𝑃𝑚→𝑛+1
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

− 𝛥𝑃𝑚→𝑛+1
𝑚𝑖𝑔

 [6.f] 

𝑃𝑚→𝑛
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

− 𝛥𝑃𝑚→𝑛
𝑚𝑖𝑔

≥ 𝑃𝑚→𝑛−1
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

− 𝛥𝑃𝑚→𝑛−1
𝑚𝑖𝑔

 [6.g] 

𝑃𝑚→𝑚
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

+∑𝛥𝑃𝑚→𝑛
𝑚𝑖𝑔

𝑛

≥ 𝑃𝑚→𝑚+1
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

− 𝛥𝑃𝑚→𝑚+1
𝑚𝑖𝑔

 
[6.h] 

𝑃𝑚→𝑚
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

+∑𝛥𝑃𝑚→𝑛
𝑚𝑖𝑔

𝑛

≥ 𝑃𝑚→𝑚−1
𝑚𝑖𝑔∣𝑠𝑡𝑎𝑟𝑡

− 𝛥𝑃𝑚→𝑚−1
𝑚𝑖𝑔

 
[6.i] 

 

1.5.2. Decomposing Default Probability Structures from Market Data 

Equation 4 and 6 may still be complex, computationally expensive, and may still be improved upon, 

particularly with improved initial solutions. One option may be to first decompose default probability term 

structures per rating category, and then to decompose or work towards a rating migration matrix from this. 

Equation 7 stipulates the optimization problem to decompose default probability term structures from market 

data for rating categories. The constraints are that each of the interval default probabilities must be greater than 

or equal to 0, and less than or equal to 1 (equation 7.b). Also, a constraint is added to limit the resulting structure 

variance below a stipulated ceiling (equation 7.c). This method of decomposition is outlined by Barnard 

(2016a) and Barnard (2016b). Structure variance is measured as the rate of change of interval default 

probability. Modelled bond value is based on the reduced form model of equation 1, and the interval default 

probabilities decomposed are substituted into that equation. 

Again, 𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡∣𝑘and 𝑉𝑛

𝑚𝑜𝑑𝑒𝑙∣𝑘are the market and modelled bond value of bond 𝑛with rating category 

𝑘;𝑁𝑘 is the total number of sample bonds of rating category 𝑘; ℎ𝑚is the interval default probability of interval 
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𝑚; 𝑀is the total number of intervals; 𝐶𝑣is the specified variance ceiling. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑(𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡∣𝑘 − 𝑉𝑛

𝑚𝑜𝑑𝑒𝑙∣𝑘)2

𝑁𝑘

𝑛=1

 

[7.a] 

Subject to:  

ℎ𝑚 ≥ 0 ℎ𝑚 ≤ 1 [7.b] 

∑(ℎ𝑚+1 − ℎ𝑚)
2

𝑀−1

𝑚=1

≤ 𝐶𝑣 

[7.c] 

 

As part of the optimization, market bond value – as opposed to modelled bond value – can also be 

based on a market based interest rate term structure instead – an interest rate term structure decomposed from 

market data. Instead of its quoted price, the market value of a bond is taken to be the resultant value when 

discounting the bond against the market based interest rate term structure. This assumes the decomposed 

market interest rate term structure ideally represents the market outlook, and this renders issues' residual 

modelling error equal to zero. The benefit of this is that it reduces idiosyncratic bond value error, therby 

simplifying the problem. This also shifts the focus from merely a portfolio of bonds to an interest rate term 

structure instead, such that the objective is expressed as decomposing the corresponding default probability 

structure of an interest rate term structure, and vice versa, rather than decomposing the default probability 

structure of a portfolio. 

Furthermore, when market bond value is based on a decomposed interest rate term structure, and the 

number of issues are sufficient, and adequately spaced in terms of maturity, it is also possible to calculate a 

default probability term structure by means of a sequential (bootstrapping) method that iteratively seeks the 

next interval default probability that minimizes modelled issue value error. The mechanics of the sequential 

method is easy to follow when considering an issue with such a maturity that it is only affected by one interval 

default probability – in this case, the default probability structure (applicable to the issue) only spans one 

interval, and can be calculated through iterative searching. When ordering issues according to maturity, each 

subsequent issue will then also have only one outstanding interval default probability, if it adopts the default 

probability structure of the preceding issues and intervals. 

 

2. Methodology 

 

The study examines the power and accuracy of the proposed method to decompose default probability 

term structures from market data, and in particular from interest rate term structures decomposed from market 

data. In particular, the study examines the corresponding interest rate term structures of the default probability 

term structures of a typical rating migration matrix. Also, the study examines the default probability term 

structures of interest rate term structures, firstly those obtained from the previous step – mapping the interest 

rate term structures obtained from the default probability term structures of the rating migration matrix back 

to default probability term structures – and secondly a typical market interest rate term structure set. In addition, 

the study examines the extent by which it is possible to utilize external (artificial) bond portfolios as part of 

decomposing default probability term structures, by examining the sensitivity of the results to the coupon rates 

of the bond portfolio sample used as part of the study. 

Overall, seven principal credit ratings are considered – [AAA, AA, A, BBB, BB, B, CCC]. In all cases 

that bond value is modelled, equation 1 is used to calculate the value of the bonds. For this purpose, recovery 

rates are taken from Elton et al. (2001). Table 1 shows the recovery rates used. In all cases, the risk-free rate 

used is taken from Elton et al. (2001) and Huang and Huang (2012). Also, in all cases, an artificial portfolio of 

bonds is used. The coupons of the bonds are varied – four different values are used: 2.5, 5.0, 7.5, and 10.0. Ten 

intervals are considered, and the maturity of the issues are such that one issue matures per interval. Thus, 10 

issues are used per rating category, and 70 issues are used overall. 

The study uses a rating migration matrix from Elton et al. (2001) to map the interest rate term structures 

corresponding to the default probability term structures of this rating migration matrix. The rating migration 

matrix is slightly adapted where it violates some of the constraints mentioned as part of equation 4. Table 2 

and table 3 show the original and adapted rating migration matrix, respectively. The default probability term 

structures of this particular rating migration matrix are substituted into equation 1 to calculate corresponding 
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bond value. Interest rate term structures are then decomposed from this price data to obtain interest rate term 

structures for the default probability term structures. For this purpose, the decomposition method of Barnard 

(2016a) is used. In all cases, a structure variance ceiling of 0.001 or lower is used. 

The interest rate term structures obtained for the default probability term structures of the above-

mentioned rating migration matrix are again used as input, and their corresponding default probability term 

structures are decomposed to investigate the extent by which the original default probability term structures 

are again surfaced. In addition, risk-free and risk-bearing term structures from Elton et al. (2001) and Huang 

and Huang (2012) are used to examine the default probability term structures of typical market interest rate 

term structures. Figure 1 shows the risk-free and risk-bearing term structures. When decomposing the default 

probability term structures of interest rate term structures, the bonds are discounted against the applicable 

interest rate term structure and this price data is used. Both the optimization method and sequential method are 

used to decompose default probability term structures, and equation 1 is used to model bond value. 

To implement the sequential (bootstrapping) method, a custom algorithm is written to sequentially 

calculate and iteratively search interval default probabilities. A simple barrier method is utilized to implement 

the optimization method. However, an algorithm is used to iteratively switch between optimization equations, 

and the best result per iteration is used as the initial solution of the next iteration. Equation 8 notes the 

optimization equations used, in extension to the least-squares problem expression of equation 7.a. 

Nevertheless, all optimization equation results are still converted to, expressed, and compared in terms of 

equation 7.a. Equation 8.c and equation 7.a are identical. Equation 8.b considers absolute modelling error, 

instead of squared modelling error, and equation 8.d and 8.e respectively penalize positive and negative 

modelling error more strongly. 

 

𝑦 = (𝑉𝑛
𝑚𝑎𝑟𝑘𝑒𝑡 − 𝑉𝑛

𝑚𝑜𝑑𝑒𝑙) 𝑎⁄  

𝑎 ∈ [1, 105, 1010] 

[8.a] 

𝑧 = |𝑦| [8.b] 

𝑧 = (𝑦)2 [8.c] 

𝑧 = (𝑦)𝑏1 + (𝑦)𝑏2 

𝑏 ∈ [(4,3), (8,6)] 

[8.d] 

𝑧 = (𝑦)𝑏1 − (𝑦)𝑏2 

𝑏 ∈ [(4,3), (8,6)] 

[8.e] 

 
Table 1. Recovery rates as percentage of par (Elton et al, 2001) 

AAA AA A BBB BB B CCC 

68.34 59.59 60.63 49.42 39.05 37.54 38.02 

 

Table 2. Rating migration probability – Standard and Poor's (Elton et al, 2001) 

 AAA AA A BBB BB B CCC Default 

AAA 90.788 8.291 0.716 0.102 0.102 0.000 0.000 0.000 

AA 0.103 91.219 7.851 0.620 0.103 0.103 0.000 0.000 

A 0.924 2.361 90.041 5.441 0.719 0.308 0.103 0.103 

BBB 0.000 0.318 5.938 86.947 5.302 1.166 0.117 0.212 

BB 0.000 0.110 0.659 7.692 80.549 8.791 0.989 1.209 

B 0.000 0.114 0.227 0.454 6.470 82.747 4.086 5.902 

CCC 0.228 0.000 0.228 1.251 2.275 12.856 60.637 22.526 

Default 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000 

 

Table 3. Rating migration probability adapted from Standard and Poor's (Elton et al, 2001) 

 AAA AA A BBB BB B CCC Default 

AAA 90.789 8.291 0.716 0.102 0.102 0.000 0.000 0.000 

AA 0.103 91.22 7.851 0.620 0.103 0.103 0.000 0.000 
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 AAA AA A BBB BB B CCC Default 

A 0.924 2.361 90.041 5.441 0.719 0.308 0.103 0.103 

BBB 0 0.318 5.938 86.947 5.302 1.166 0.117 0.212 

BB 0 0.110 0.659 7.692 80.550 8.791 0.989 1.209 

B 0 0.114 0.227 0.454 6.470 82.747 4.086 5.902 

CCC 0.228 0.228 0.228 1.251 2.275 12.856 60.408 22.526 

Default 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000 

 

 
Figure 1. Risk-free and risk-bearing term structures 

3. Analysis 

 

Figure 2 to 8 show the interest rate term structures decomposed for the default probability term 

structures of the rating migration matrix (table 2). The corresponding default probability term structures of the 

rating migration matrix form the reference structures of figure 9 to 15, and can be seen in these figures. For all 

7 rating categories, the 4 different coupon sizes were used to decompose the interest rate term structures, and 

the interest rate term structures of the different coupon sizes are delineated in the graphs. In all cases, residual 

modelling error is negligible (maximum error is measured at 1E-08, with most cases measuring error far less 

than 1E-08) and the decomposed interest rate term structures can thus be seen as accurate representations. In 

some of the cases, the decomposed term structure still carry some excess variation, and the term structures can 

be further optimized by further fine-tuning the variance ceiling. Regardless, the graphs reveal the fundamental 

structures. 

Rating category C struggles to decompose an interest rate term structure, given the bond values 

stemming from the default probability term structure. The constant forward rate plots of figure 8 are the initial 

solutions used, and the optimization could not find better solutions in these cases. One viable conclusion then 

is that this particular default probability term structure of the rating migration matrix is partly invalid, from the 

point of view of a valid interest rate term structure, and constraints in this regard. One constraint in particular 

may be negative forward rates – the default probability term structure requires negative forward rates to 

decompose an interest rate term structure. 

From a comparison between the default probability term structures and interest rate term structures, it 

is evident that the forward rates accelerates and decelerates according to and in accordance with the 

acceleration and deceleration of the default probability. The transition from default probability term structure 

to interest rate term structure is also sensitive to the magnitude of the coupons. However, the extent thereof 

differs across the rating categories, with the higher rating categories being less sensitive, and the lower rating 

categories being more sensitive. Nonetheless, general structure is seemingly perserved – even though the 

interest rate term structures of different coupon sizes differ for the same default probability structure, their 

structure is similar and comparable. Most of the sensitivity occurs across the tail of the term structure, with 

little sensitivity across the front of the term structure. 

A question that naturally derives from this is the extent by which the interest rate term structures 

corresponding to the default probability term structures of typical rating migration matrices correspond to 
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market interest rate term structures – do default probability term structures stemming from rating migration 

matrices and default probability term structures embedded in market data correspond then? 

 

 
Figure 2. Forward rate interest term structure – AAA 

 

 
Figure 3. Forward rate interest term structure – AA 

 

 
Figure 4. Forward rate interest term structure – A 
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Figure 5. Forward rate interest term structure – BBB 

 

 
Figure 6. Forward rate interest term structure – BB 

 

 
Figure 7. Forward rate interest term structure – B 
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Figure 8. Forward rate interest term structure - CCC 

 

Figure 9 to 15 show the resultant default probability term structures when again utilizing as input the 

decomposed interest rate term structures of the original default probability term structures of the rating 

migration matrix. Core to this inquiry is the extent by which the original default probability term structures 

can again be surfaced, as a method to reflect on model power, accuracy, and distortion or error. Given that 4 

different coupon sizes were used during the previous test, the interest rate term structures corresponding to a 

coupon size of 7.5 are selected and used as the reference case here. Hence, the expectation is that the original 

default probability term structures of the rating migration matrix must again be sourced, when using a coupon 

size of 7.5, and when utilizing the interest rate term structures corresponding to a coupon size of 7.5, 

decomposed during the previous test. Nevertheless, the 4 different coupon sizes are again underlying the 

decompositions, to also note the sensitivity of the decomposed default probability term structures to coupon 

size. The figures show the default probability term structures corresponding to the different coupon sizes, 

together with the reference default probability term structure of the rating migration matrix. 

The results show that the original default probability term structure is again surfaced in all cases, when 

the coupon size match – the default probability term structure corresponding to a coupon size of 7.5 perfectly 

lies on the reference default probability term structure. The exception is rating category CCC, which struggled 

to decompose an interest rate term structure in the first place. Again, the results are sensitive to the coupon 

size. However, this time the sensitivity is more constant across the different rating categories – both higher and 

lower rating categories reveal significant sensitivity, with less difference in sensitivity between higher and 

lower rating categories. Still, the term structures of the different coupon sizes are comparable. Sensitivity is 

again restricted to the tail of the term structures. 

 

 
Figure 9. Default probability term structure - AAA 
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Figure 10. Default probability term structure – AA 

 

 
Figure 11. Default probability term structure – A 

 

 
Figure 12. Default probability term structure – BBB 
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Figure 13. Default probability term structure – BB 

 

 
Figure 14.  Default probability term structure – B 

 

 
Figure 15.  Default probability term structure - CCC 

 

Figure 16 to 22 show the default probability term structures corresponding to and decomposed from 

the market term structures of Figure 1. Again, this is done for the four different coupon sizes. Residual 

modelling error is insignificant. The structures are again sensitive to the coupon sizes, with the sensitivity 

consistent across the rating categories, and comparable structure prevailing across the different structures 
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corresponding to the different coupon size. 

The portfolio – and particularly the coupons – used may differ from the original market portfolio used 

to decompose these market interest rate term structures. Still, given basic structure consistency across the 

default probability term structures of different coupon sizes, a primary question is the extent by which these 

default probability term structures correspond with the default probability term structures of typical rating 

migration matrices. When compared to the default probability structures of the rating migration matrix of the 

previous test, the market based default probability term structures generally contain a greater constant 

component: in most (all) of cases, the market based default probability term structures have higher initiating 

values, that are generally maintained across the term structure. The intervals and nature of acceleration and 

deceleration also differ. The terminating values are generally higher in the case of the market based default 

probability term structures. 

In addition, even when accounting for the impact of the coupon size, significant differences exist 

between the default probabilities emanating from the plots, and the default probabilities contained in the rating 

migration matrix (table 2). With reference to equation 1, 2 and 3, and with reference to interval rating category 

intensities due to rating migration propagation (Barnard, 2017), only the primary rating category has non-zero 

intensity in the first interval, and because of this, only the primary rating category contributes to migration to 

default in the first interval. As a consequence, all default migration of the first interval is attributable to the 

primary rating category, and corresponds to the default probability of the primary rating category. Thus, it 

allows a comparison between the rating migration matrix default probability entry of a particular rating 

category, and the first interval default probability from the default probability term structure of the rating 

category. Table 4 lists the differences 

 
Table 4. Comparison of rating default probability – rating migration matrix versus decomposed default probability term 

structures 

 Rating migration matrix default 

probability (%) 

(table 2) 

Decomposed default probability term structure first interval default 

probability (%) 

(figure 16 – 22; approximate) 

AAA 0.000 1.200 

AA 0.000 1.200 

A 0.103 2.000 

BBB 0.212 3.000 

BB 1.209 5.000 

B 5.902 7.000 

CCC 22.526 10.000 

 

 
Figure 16. Default probability term structure of market interest rate term structure – AAA 
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Figure 17. Default probability term structure of market interest rate term structure – AA 

 

 
Figure 18. Default probability term structure of market interest rate term structure – A 

 

 
Figure 19. Default probability term structure of market interest rate term structure – BBB 
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Figure 20. Default probability term structure of market interest rate term structure – BB 

 

 
Figure 21. Default probability term structure of market interest rate term structure – B 

 

 
Figure 22. Default probability term structure of market interest rate term structure – CCC 

 

Figure 23 to 24 compare the default probability term structures decomposed with the optimization 

method, and the default probability term structures decomposed with the sequential method, given the same 

sample bond portfolio, and for the market interest rate term structures. Here, a coupon size of 7.5 is used. In 

this case, the two methods yield identical results. 
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Figure 23. Comparison between optimization and sequential method – AAA to BBB 

 

 
Figure 24. Comparison between optimization and sequential method – BB to CCC 

 

4. Conclusion 

 

Within the greater context and goal of decomposing rating migration matrices from market price data, 

two methods to decompose default probability term structures for rating categories from market data, were 

considered and empirically evaluated – an optimization method and a sequential method. 

In principle, whenever it is possible to decompose an interest rate term structure for a rating category, 

it should also be possible to decompose a default probability term structure for the particular interest rate term 

structure of the rating category. In general, the prerequisites, particularly in terms of sample size, are 

comparable. Both zero-coupon and coupon bearing bonds can be used to decompose interest rate as well as 

default probability term structures. Here, both interest rate and default probability term structures were 

decomposed from a modest sample size, such that the number of issues (sample size) required is not necessarily 

a limiting factor. 

It is demonstrated that the two models have comparable outputs. Yet, the optimization method should 

offer greater flexibility over the sequential method, in terms of issue maturity distributions. The optimization 

method does not necessarily require an issue to mature in each interval. Nevertheless, the sequential method 

is computationally less expensive, and when utilizing artificial and simulated portfolios, the sequential method 

can still be utilized to illuminate default probability term structures with a reasonable degree of accuracy. This 

by itself may be informative and can help to shape subsequent decompositions and inquiries. 

Decompose default probability term structures from market data also allows a mapping between 

default probability term structures and interest rate term structures –  the mapping of the default probability 

term structures of interest rate term structures, and vice versa. As a result, the immediate question emanating 



Barnard, B., 2018. Rating Migration and Bond Valuation: A Historical Interest Rate and Default Probability Term Structures.  

Expert Journal of Finance, 6, pp.16-39. 

37 

from this is whether decomposed default probability term structures are structurally valid and proper, and how 

it reflects on market interest rate term structures and market prices. In turn, this may imply and permit a useful 

evaluation tool – whether an interest rate (default probability) term structure is valid and sensible, when 

considering its corresponding default probability (interest rate) term structure, and vice versa. 

For the data used, the default probability term structures decomposed from the market interest rate 

term structure set significantly differ from the rating migration matrix based default probability term structures. 

Of course, coupon size is a determining factor. Still, this factor alone can not account for the discrepancy. This 

then places focus on the comprehensiveness of the underlying bond valuation model. If the model is assumed 

to be sufficiently comprehensive, the conclusion is that market expectations of default probability differ from 

that of rating migration matrices, and the historical outcomes of default probability from which the rating 

migration matrix default probabilities are devised. 

The underlying bond valuation model used as part of the decompositions did not include taxation as 

factor. This is something that can receive further attention. Still, a number of studies contest whether default 

is a prominent factor of bond valuation. This view may be premised on a presupposed model of default 

probability and default probability term structures. When decomposing default probability term structures from 

market data, fewer presuppositions are made, specifically given the way it is conducted.  The results yield 

additional data that may require that the prominence of default probability as bond valuation factor should be 

reconsidered. 

By nature, decomposed default probability term structures would move with market prices and market 

interest rate term structures, and whenever market prices and market interest rate term structures change. This 

too is an interesting dynamic to consider. It implies that default probability term structures move with greater 

frequency than what may be anticipated, and an implication may be that the price implications are already 

contained and incorporated into the default probability term structures, such that the default probability term 

structures also contain an embedded volatility component. 
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